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Abstract

This thesis presents a blockchain-based platform where algorithmic problems can be posed
as competitions, potentially, with a financial reward. A competition is won by the first
individual to submit an algorithm that is both correct and bounded on time and space
complexity, in accordance with the specification of the corresponding problem. Submitted
algorithms must be accompanied by a formal proof of correctness which is mechanically
validated by the platform. The platform is based on blockchain technology, specifically
Ethereum, which ensures transparency on solution validation and allows for the automatic
payment of competition rewards.

A complete system design is proposed and experimentally evaluated. The system consists of
a web-based front end and a blockain-based backend. The blockain-based backend conducts
competitions transparently and validates submitted algorithms and proofs mechanically. The
proposed system design is evaluated by an experimental proof-of-concept implementation.

Furthermore, a theoretical setup is established in order to develop the methods and tools
required to make the platform a reality. This theoretical setup includes a method for the
formal specification of computational problems where problem specifications are formatted
as special problem-definition algorithms. A method for proving algorithm correctness
against such problem specifications is proposed based on formal program verification. A
new programming language with a fully working compiler is developed for the representation
of algorithms. A proof composer for proofs of algorithm correctness is developed based on
a custom configuration of Hoare logic.
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Περίληψη

Ηπαρούσα διπλωματική εργασία παρουσιάζει μια πλατφόρμα στην οποία μπορούν να

διεξαχθούν διαγωνισμοί για την επίλυση αλγοριθμικών προβλημάτων, προαιρετικά,
με χρηματικό έπαθλο. Νικήτρια ενός διαγωνισμού ανακηρύσσεται η πρώτη συμμετοχή

που κρίνεται ορθή και ταυτόχρονα φράσσεται ως προς τη χρονική και χωρική πολυ-

πλοκότητά της, βάσει των προδιαγραφών του υπό εξέταση αλγοριθμικού προβλήμα-

τος. Οι συμμετοχές αποτελούνται έναν αλγόριθμο-επιλυτή καθώς και μία απόδειξη

ορθότητάς του, η οποία επαληθεύεται μηχανικά από την πλατφόρμα. Η πλατφόρμα

βασίζεται σε τεχνολογία blockchain, συγκεκριμένα στο δίκτυο Ethereum, εξασφαλί-
ζοντας διαφάνεια στην αξιολόγηση των συμμετοχών και επιτρέποντας την αυτόματη

πληρωμή των χρηματικών επάθλων.

Η εργασία προτείνει και αξιολογεί πειραματικά μια πλήρη σχεδίαση συστήματος. Το
σύστημα αποτελείται από μία διαδικτυακή διεπαφή και από ένα backend βασισμένο

στο blockchain. Το backend είναι υπεύθυνο για τη διαφανή και αυτοματοποιημένη

διεξαγωγή των διαγωνισμών καθώς και για την μηχανική επικύρωση των υποβαλλό-

μενων αλγορίθμων και αποδείξεων ορθότητας. Η προτεινόμενη σχεδίαση συστήματος

αξιολογείται πειραματικά μέσω μια βασικής υλοποίησης.

Η εργασία, επίσης, εγκαθιδρύει μια θεωρητική βάση που καθιστά δυνατή την ανάπ-

τυξη των απαραίτητων μεθόδων και εργαλείων ώστε να μπορέσει η πλατφόρμα να

γίνει πραγματικότητα. Η θεωρητική αυτή βάση περιλαμβάνει μια μέθοδο για τον

τυπικό ορισμό των προδιαγραφών ενός υπολογιστικού προβλήματος σύμφωνα με την

οποία ένα υπολογιστικό πρόβλημα παρίσταται από έναν ειδικό αλγόριθμο-ορισμό.
Συνακολούθως, αναπτύσσεται μια μέθοδος για την απόδειξη της ορθότητας αλγο-

ρίθμων σύμφωνα με τέτοιες τυπικά δοσμένες προδιαγραφές προβλημάτων. Μία νέα

γλώσσα προγραμματισμού έχει σχεδιαστεί για το σκοπό της αναπαράσταση των αλ-

γορίθμων. Η νέα αυτή γλώσσα συνοδεύεται από έναν πλήρως λειτουργικό compiler
Επιπλέον, έχει αναπτυχθεί ένας βοηθός σύνθεσης αποδείξεων ορθότητας αλγορίθμων
με βάση μια προσαρμοσμένη διαμόρφωση της λογικής Hoare.
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1Introduction

1.1 Motivation and Problem Statement

1.1.1 Motivation

Throughout history there have been numerous unsolved mathematical problems and for
some of them a financial reward was promised to the first individual who can find a solution
(see [Guy04] for a list). The main question that motivates this thesis is:

Can we make a platform where mathematical problems are posed as competitions with a
potential financial reward that will be paid to the creator of the first correct solution?

Our additional requirements for such a platform would be that the validation for the cor-
rectness of proposed solutions must be automatic and error-free and in turn, any reward
must automatically be paid to their creator. Furthermore, we would like to ensure that all
solutions and their proofs are available for everyone.

The emerging technology of blockchain and smart contracts presents an opportunity for
a platform fulfilling those requirements to be realized. Specifically, smart contracts are
programs that are stored in a blockchain and thus unaltered. Smart contracts can receive
data through transactions, validate that these data satisfy certain requirements and then
automatically perform payments. Additionally, all transaction data on a public blockchain
are publicly available. So, if mathematical questions, answers and proofs can become
transaction data for a smart contract that is able to validate proofs, then our target competition
platform has been realized.

Handling all the kinds of mathematical problems is of course a very ambitious goal. So,
this thesis focuses on a specific problem kind: the algorithmic problems. Our view of
algorithmic problems defines them according to the equation:

Algorithmic Problem = Computational Problem + Complexity Constraints

So, the questions we focus on have the form: can we make an algorithm which solves this
computational problem while satisfying certain time and space complexity constraints?
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1.1.2 Concept and Actors

Competitions have two actors roles:

Petitioner The individual who poses a problem and initiates a competition

Creator The individual who proposes a solution accompanied by a proof

There is no role of “reviewer” as solutions are validated by the platform.

We focus on algorithmic problems, thus petitioners provide definitions of algorithmic
problems while creators provide algorithms. A definition for an algorithmic problem consist
of the following:

• A definition for the underlying computational problem which will serve as a specifi-
cation for the correctness of proposed algorithms

• A set of complexity constraints that must be satisfied by proposed algorithms

Creators submit algorithms in the form of a procedural program and accompany them with a
proof for their correctness and their worst case asymptotic complexity. Proofs are composed
with the utilization of formal program verification methods.

1.2 Thesis Structure

Chapter 2

In chapter 2 we give some background and present some related works about competition
platforms, formal program verification, automated theorem proving systems, blockchains/s-
mart contracts and their intersections.

Chapter 3

In chapter 3, we first establish a generic abstract framework that is able to formally describe
the conducting of competitions regarding general mathematical questions. Subsequently,
we specialize this abstract framework for the domain of algorithms, thus producing the
theoretical ground for our algorithmic problem solving competition platform. The main
result of this chapter is the proposition of a method for defining algorithmic problems which
derives from the concept of the verifier algorithm used in the study of NP-completeness.
This problem definition method is then enriched to express worst-case time and space com-
plexity requirements. Finally, chapter 3 describes the process of validating an algorithm’s
correctness and worst-case complexity against a given problem definition with the use of
Hoare logic.

2 Chapter 1 Introduction



Chapter 4

In chapter 4, we present the design of our blockchain-based platform which corresponds to
the theoretical framework introduced in chapter 3. Our platform comprises of a web-based
front end and a purely blockchain-based back end. The front end includes a compiler for
problem definitions and solver algorithms and a proof composer for composing proofs of
correctness for solver algorithms with the use of Hoare logic. The blockchain-based back
end includes smart contract components for conducting competitions, validating and storing
compiled problem definitions and solver algorithms and validating proofs of correctness
for solver algorithms. All these components are fully functional except for the last one, the
validator for proofs of correctness, which is experimental work with limited capabilities that
serves for the evaluation of the design.

Chapter 5

In chapter 5 we evaluate the concept experimentally. For the experiment we submit various
problem definitions and solvers and a single proof of correctness. We measure the gas cost
of the submissions. We also discuss the ease of use of the platform. Lastly, we attempt to
reason about the feasibility of the concept for real world use cases.

Chapter 6

In chapter 6 we present our conclusion regarding the feasibility of the concept and the
conclusions that arose from the evaluation. Furthermore, we propose future work that will
lead to a more complete, efficient and easy to use platform.

1.2 Thesis Structure 3





2Background and Related Work

2.1 Background

We shall present some background in the fields of competition platforms, formal program
verification, automated theorem proving systems, blockchains/smart contracts and their
intersections.

Automated theorem proving allows to automatically prove formal theorems or validate
proofs of formal theorems. The automation of a proof is often regarded as guaranty for it’s
correctness. Present day systems for automated theorem proving include Isabelle/HOL1

[NWP02] and Coq2 [Bar+97].

Formal program verification allows to formally prove statements about programs. It began
in the decade of 1960 with the works of Floyd [Flo67] and Hoare [Hoa69] and since then
has been extended to handle more advanced program elements such as pointers [Bor00],
global variables [Coo78] and recursive procedures [AB90]. Furthermore, formal program
verification has been proposed to prove bounds for the time complexity of programs [Nie84].
Regarding reading material on formal program verification, Huth and Ryan [HR04] approach
the task by it’s foundations in Logic while Nipkow and Klein [NK14] utilize an automated
theorem proving system to both introduce the theoretical aspects and present practical
applications.

Smart contracts in blockchain is a relatively new, yet emerging, field that got popularized by
the Ethereum3 network introduced by Buterin [But13] and Wood [Woo14]. The Ethereum
network is fully stable and used in production business systems.

Automated theorem proving on blockchain is starting to show some studies such as [Su18]
and [Car+21], both proposing interactive blockhain-based theorem provers which utilize
financial incentivization mechanisms. However, to the best of the author’s knowledge, no
work has been presented on performing formal program verification in the blockchain (note
that the opposite i.e. performing formal program verification of smart contracts by the use
of off-the-blockchain tools has had considerable attention).

1https://isabelle.in.tum.de/
2https://coq.inria.fr/
3https://ethereum.org/en/
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Finally, in regards to competition platforms for scientific problems, the most notable one is
Kaggle4 which specializes in data mining problems.

2.2 Related Work

Brodal [Bro] lists various platforms for algorithm programming competitions. However, the
listed platforms pose already solved problems as a means to challenge the contestants rather
than tackling problems of interest with new algorithms.

When it comes to theorem proving in blockchain, we studied two related works. The first
work by Su [Su18] proposes a new blockchain where transactions can prove mathematical
theorems taking previous transactions as antecedents. The second work by Carré et al.
[Car+21] uses the technology of smart contracts to validate proofs about formal statements.
A notable fact about the later work is that it regards a proof as a tree, and requires a proof
node to be formally validated in the blockchain only when it’s truth is being doubted thus,
trivial points in proofs will not require formal validation, effectively saving resources.

4https://www.kaggle.com/competitions

6 Chapter 2 Background and Related Work
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3Theoretical Setup

This chapter presents the theoretical setup for automatically conducting algorithmic problem
solving competitions. By formalizing the general concept of automated competitions, it
appears that automated algorithmic problem solving competitions mainly require a) a method
for defining computational problems and b) a method for proving the correctness of proposed
algorithms.

A method for defining computational problems is proposed in this chapter, where compu-
tational problems are uniquely defined by a special problem-definition algorithm. Subse-
quently, a method for proving algorithm correctness against such problem definitions is
developed with the help of Hoare logic.

3.1 Abstract Framework for Automated
Competitions

In this section, we establish a generic and abstract framework that is able to formally de-
scribe the conducting of competitions regarding formally posed mathematical questions.
This framework is abstract as it is not adequate to support any kind of competitions without
further work. This framework is generic in the sense that it defines the generic concept of
a competition and describes specific components that need to be defined/implemented for
competitions of a certain kind to be supported. Namely, for any competition kind, these
components are: a family of mathematical objects Q that contains all valid question/prob-
lems/specifications that can be posed, a family of mathematical objects A that contains all
possible answers/solutions/participations that may be given in response to any q ∈ Q and,
finally, a proof validator mechanism v that is able to validate a proof for the suitability of a
given a ∈ A for a given q ∈ Q. In the next section, we fully define this triplet for algorithmic
problem solving competitions.

This section first provides some core definitions and then describes the flow of competi-
tions.

7



3.1.1 Definitions

Below we define the core notions for our abstract competition framework.

3.1.1.1 Problems

Definition 3.1 (Problem Kind). A problem kind K is defined by a pair (QK , AK) where QK

is a family of objects which contains the representations of all questions that can be posed
and AK is a family of objects which contains the representations of all answers that may be
given. A question q ∈ QK specifies the requirements of a problem in K while an answer
a ∈ AK aims to comply with the requirements of specific q ∈ QK .

I In other words, a problem kind consists of the definition of what is considered a valid
question/problem/specification and what is considered a valid answer/solution/participa-
tion.

3.1.1.2 Proof validators

Definition 3.2 (Proof Validator). A proof validator v that serves a problem kind K =

(QK , AK) is a mechanism1 capable of determining the suitability of an answer a ∈ AK for a
question q ∈ QK . A proof validator receives a q ∈ QK , an a ∈ AK and a third object p which
is a proof of correctness (suitability) of a for q. Effectively, v works as a partial function
v: QK × AK × Pv → {True} where Pv is the family of objects that v comprehends as proofs
of correctness. Given q ∈ QK , a ∈ AK and p ∈ Pv, if v(q, a, p) = True then v deems a to be
correct (suitable) for q.

Let, now, v be a proof validator which serves a problem kind K = (QK , AK).

Definition 3.3 (Proof Validator Soundness). v is sound if for every q ∈ QK and a ∈ AK the
existence of a p such that v(q, a, p) = True necessarily means that a is correct for q.

I In other words, a proof validator is sound if it is never wrong whenever it deems an answer
correct.

Definition 3.4 (Proof Validator Completeness). v is compete if for every pair q ∈ QK and
a ∈ AK such that a is correct for q there exists p such that v(q, a, p) = True.

1In the simplest (pure) case, a proof validator is an algorithm, however, a mechanism that works interactively
or is time dependant is also acceptable in the general case.

8 Chapter 3 Theoretical Setup



I In other words, a proof validator is complete if for every correct answer, that proof
validator is able to deem it correct.

Definition 3.5 (Proof Validator Pureness). v is pure if it’s response for given (q, a, p) is a
function exclusively of those (q, a, p) and does not depend on any other information neither
is time depended.

I In case a proof validator is pure, it’s function is simplified to the execution of an algorithm.
In our framework, the usage of a pure proof validator is adequate in order to automate the
conducting of competitions.

3.1.1.3 Competitions

Definition 3.6 (Competition Kind). A competition kind Kc is defined by a pair ((QK , AK), v)
where (QK , AK) is a problem kind and v is a proof validator which serves that problem kind.

I In other words, Competition Kind = Problem Kind + Proof Validator.

Definition 3.7 (Competition Declaration). The declaration Cd of a competition is defined
by a pair (q,Kc) where Kc = ((QK , AK), v) is a competition kind and q ∈ QK is the
question/problem/specification of the competition.

I In other words, Competition Declaration = Question + Competition Kind.

Definition 3.8 (Competition Progress). The progress Cp of a competition with declaration
Cd = (q, ((QK , AK), v)) at a specific point in time consists of the sequence ((ai, pi)) of the
answers ai ∈ AK submitted up until that point and the proofs pi following them. The
competition has successfully concluded if there exist (a, p) ∈ Cp such that v(q, a, p) = True.

I In other words, a competition concludes when an answer and it’s accompanying proof
make the proof validator respond positively.

3.1.1.4 Corollary

By having a fully defined competition kind Kc = ((QK , AK), v), that is a formal notion of
what is a question, a formal notion of what is an answer and a proof validator to judge
answers, we can develop a system able to conduct competitions. Furthermore, if v is pure
then these competitions can be automated to the maximum extend.

3.1 Abstract Framework for Automated Competitions 9



Figure 3.1: Flow of a competition

3.1.2 Competition flow

On a competition kind Kc = ((QK , AK), v), the main flow of a completion is as follows:

1. The petitioner submits the question q and starts the competition

2. A creator submits an answer a accompanied by a proof p

3. The system invokes the proof validator v on (q, a, p) and
• if v responds positively the competition concludes successfully

• otherwise, the system allows the re-execution of step 2

This flow is depicted in figure 3.1.

3.2 Algorithmic Problem Solving Competitions

For the remainder of this thesis, we focus on a single problem kind: the search for algorithms
for computational problems, restricted by worst case time and space complexity constraints.
More formally, let KA = (Q, A) be the problem kind under consideration where the elements
of Q represent computational problems accompanied by complexity constraints and the

10 Chapter 3 Theoretical Setup



elements of A represent solver algorithms for the elements of Q. In order for the generic
competition framework of the previous section to be specialized for algorithmic problem
solving competitions, we first define the format of problem definitions (objects in Q) and
solver algorithms (objects in A) and then propose an appropriate proof validator mechanism.
The proof validator mechanism we propose, validates the suitability of a solver algorithm
against a problem definition with the help of a proof in Hoare logic.

This section is organized as follows: we first give some suitable definitions for computational
problems in subsection 3.2.1, then we establish the format of solver algorithms in subsection
3.2.2, subsequently we establish the format of problem definitions in subsection 3.2.3 and,
finally, we describe the proof validator mechanism in subsection 3.2.4.

3.2.1 Computational problems

3.2.1.1 Definition

Definition 3.9 (Computational Problem). A computational problem is a binary relation
P ⊆ IP × S P where IP is the instance space of the problem and S P is the solution space of
the problem. The meaning of P is the following: for i ∈ IP and s ∈ S P if (i, s) ∈ P then s
is a correct solution for instance i. An i ∈ IP for which there is no s ∈ S P s.t. (i, s) ∈ P is
called a negative instance for P.

For example, the problem of finding the natural square root of a natural number is defined by
the pairs (0, 0), (1, 1), (4, 2), (9, 3), ... while natural numbers with no natural square root, such
as 3 or 6, are negative instances for this problem. In this problem we have IP = S P = N0.

Decision problems are a problem class where the objective for any given instance is to
decide whether that instance holds a specific property or not. We view decision problems
as a special case of computational problems. Indeed, a decision problem can be viewed
as a computational problem P ⊆ IP × S P consisting of all (i, s) pairs for which i holds the
property and s always equals the boolean value True.

For example, the primality testing problem is defined for natural numbers > 1 by the pairs
(2,True), (3,True), (5,True), (7,True), ... while composite numbers, such as 4 or 6, are
negative instances for this problem. In this problem we have IP = {i ∈ N | i > 1}. Regarding
the solution space, we may either consider S P = {True} or S P = {True, False}.

REMARK: Other definitions for computational problems, such as the one in [Mac18],
do not restrict the instances to a space IP or the solutions to a space S P but rather define
computational problems over the space of all strings, Σ∗. However, as we describe later in

3.2 Algorithmic Problem Solving Competitions 11



this chapter, the solver algorithms in our platform are guarded against invalid instance repre-
sentations and are guaranteed to be handled valid instances only. Furthermore, algorithms in
our platform are written in a high level programming language which has data types such as
integers and arrays, so the solutions returned by solver algorithms are bound to a data type
and cannot be arbitrary strings. The consequences of this remark are addressed in detail in
paragraph 3.2.3.3.

3.2.1.2 Extended format definition

In definition 3.9 we saw that a computational problem is not necessarily a total relation over
it’s instance space due to the existence of negative instances. As we desire to establish a
standard behaviour over solver algorithms for handling negative instances, we introduce the
extended format of a computational problem.

Definition 3.10 (Extended Format of Computational Problem). For a given computational
problem P ⊆ IP × S P we first define a set NoS olution that is disjoint with S P and the
selection of it’s contents can be arbitrary. Now, the extended format, denoted as P′, shall be:

P′ = {(i, r) | (i, r) ∈ P or r ∈ NoS olution and i is negative}

In other words, if NP is the set of negative instance of P then:

P′ = P ∪ NP × NoS olution

For example, for the problem of the natural square root, if we select NoS olution = {−1} we
end up with the extended format consisting of (0, 0), (1, 1), (2,−1), (3,−1), (4, 2)....

As another example, for primality testing, if we select NoS olution = {False} we end up
with the extended format consisting of (2,True), (3,True), (4, False), (5,True), (6, False),
....

3.2.2 Solver algorithms/Answer objects

In our platform, a correct solver algorithm for a problem P ⊆ IP × S P is required to compute
the extended problem P′ in order to handle negative instances. That is, a solver algorithm
must implement a function IP → S P ∪ NoS olution that maps every instance to either a
correct solution s ∈ S P (i.e an s for which (i, s) ∈ P) or to an element of NoS olution if i is a
negative instance.
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1 function solve(int n) -> int
2 int r = 0
3 result = -1
4 while r < n
5 if r*r == n
6 result = r
7 r = n
8 else
9 r = r+1

10 end
11 end
12 end

Program 3.1: Natural square root solver

For writing solver algorithms, we have designed the Ivee language which we fully describe
in appendix A. The syntax of Ivee is quite straightforward and we believe the reader will
easily comprehend Ivee programs without even consulting the appendix. We briefly note the
following:

• Integer variables are declared with the int keyword and initialized with 0

• Boolean variables are declared with the boolean keyword and initialized with False

• The special variable result denotes the result of a function

So, a solver is represented by an Ivee program which necessarily implements an appropriate
function solve: IP → S P ∪ NoS olution. Program 3.1 is a correct solver for the natural
square root problem when selecting NoS olution = {−1} (i.e calculating the natural square
root of a natural number or returning −1 if no such square root exists).

As we need the solver to be further processable for the purpose of proving it’s correctness,
the source code in plaintext is not a convenient format. We need a structured representation
of the program’s semantics. We obtain such a structured representation by parsing the
program’s source code, producing it’s Abstract Syntax Tree (AST) and then enriching the
AST with semantic information such data types. We refer to this representation as Semantic
AST of a program. As Semantic ASTs can get lengthy, we provide a small example in figure
3.2 for program 3.2.

1 function add(int a, int b) -> int

2 result = a + b

3 end

Program 3.2: Addition

With Semantic ASTs we have defined the format of the answer objects for algorithmic
problem solving competitions. A creator wishing to submit an answer for a competition
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Figure 3.2: Semantic AST of program 3.2

will have to submit the Semantic AST of his solver. Section 4.1.2.2 presents the compiler
we developed to transform the source source code of an Ivee program into it’s Semantic
AST.

3.2.3 Problem definitions/Question objects

The definition for computational problems we saw in subsection 3.2.1 regards a com-
putational problem as a possibly infinite relation. This makes it infeasible to achieve a
straightforward representation of a problem’s definition and so the need for an alternative
representation in the form of a finite object arises. The hard requirement for the format of
such a problem definition object2 will be to fully allow the determination of the problem’s
elements, that is, the instance-solution pairs. Furthermore, the format of this object must
efficiently serve the purpose of validating candidate solver algorithms against it i.e. we must
be able to use this object as a “judge” for candidate solvers. The core idea for “judging
solvers” is the following: for any given instance i of a problem P, after passing the instance
to a candidate solver and obtaining the solver’s response s, use the problem definition
object to assert that s is a correct solution for i or, if i is a negative instance, s is a negative
response. To appropriately handle the case of negative instances, we shall be working with

2The term “problem specification” could be used as a synonym for “representation of the problem definition”
in this context. However, we prefer the later as it makes the connection with previously introduced concepts
clearer.
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the extended problem format (see definition 3.10). We consider two approaches for the
format of the problem definition objects presented below.

For a given computational problem P with extended format P′, the problem definition object
can either be:

1. a logical sentence satisfiable by all (i, s) pairs belonging to P′ and only them

2. an algorithm that is able to determine whether a pair (i, s) belongs or not in P′

We promote the 2nd approach as easier to be implemented by petitioners for the following
reasons:

• We empirically believe that implementing an algorithm is a skill far more common
than composing logical sentences in a formal language

• The preceding point is further strengthened by the fact that our platform deals with
algorithms so all participants should be familiar with algorithms

• Competition questions would be authored in the same language as competition an-
swers thus reducing the knowledge requirements for petitioners

So, we focus exclusively on the 2nd option and propose a problem definition representation
inspired by the notion of the verifier algorithm known from the study of NP-completeness.

3.2.3.1 Verifier-based problem definitions

The idea of an algorithm that takes as input a problem instance along with a candidate
solution and decides whether the candidate solution is correct for that instance is well
developed in the study of NP-completeness. This kind of algorithm is known as a verifier.
Our platform utilizes the notion of the verifier as a means to formally define computational
problems. However, as pointed out by MacCormick [Mac18], the largest part of the related
literature focuses on verifiers for decision problems, contrary to the views of our platform
which focuses on computational problems and regards decision problems as a special case.
MacCormick [Mac18] proceeds to formulate a thorough and comprehensible definition for
the verifier of a computational problem. We adopt their definition to our context and present
it as definition 3.11. Definition 3.11 serves as a starting point in the process of introducing
the format of problem definition objects (formally, the elements in Q) presented later in this
chapter.

Definition 3.11 (Verifier for Computational Problems). Let P ⊆ IP × S P be a computational
problem. A verifier for P is a program V(i, s, h) with the following properties:

• V receives three parameters: an instance i ∈ IP, a candidate solution s ∈ S P, and a
hint h whose format is specific to V
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• V halts on all inputs, returning either True or False

• Every non-negative instance can be verified: If i is a non-negative instance, then
V(i, s, h) = True for some correct solution s and some hint h

• Negative instances can never be verified: If i is a negative instance, then V(i, s, h) =

False for all values of s and h

• Incorrect proposed solutions can never be verified: If s is not a correct solution
(i.e (i, s) < P), then V(i, s, h) = False for all h

In practice, a verifier V functions as follows:

V(i, s, h) =

 True If h provides sufficient evidence that s is a correct response for i
False Otherwise

A verifier in this form does meet the hard requirement of fully allowing the determination of
a problem’s elements (i.e. instance-solution pairs). Indeed, the following statement connects
membership in a problem P with the response of a verifier V for P:

(i, s) ∈ P ⇐⇒ there exists h: V(i, s, h) = True

However, this verifier form is not convenient for handing the case of negative instances
because, as resulting from points 4 and 5 of definition 3.11, it is unable to distinguish a pair
of a negative instance with a correct negative solver response from an incorrect proposed
solution. In order to be able to use the verifier as an efficient “judge” for solver algorithms,
it suffices to adopt the extended problem format which technically eliminates negative
instances and effectively renders point 4 irrelevant. Indeed, the following statement connects
membership in a problem P with the response of a verifier V ′ for the extended P′ while
also takes into account negative instances, where NP is the set of negative instances and
NoS olution in an appropriate set for negative responses:

(i, s) ∈ P or (i, s) ∈ NP × NoS olution ⇐⇒ there exists h: V ′(i, s, h) = True

We’ve now reached a point where in order to represent a computational problem P ⊆ IP×S P

it suffices to follow these steps:

1. Select a set NoS olution, disjoint with S P, in order to obtain P’

2. Write a program that implements the function veri f y: IP × S P × H → {True, False}
which must function as verifier for P′ where H is specific to the veri f y function

Let us now take the problem of natural square roots of natural numbers as an example. We
first select NoS olution = {−1} in order to obtain the extended problem and then we write a
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verifier for the extended problem, presented as program 3.3. The function of this program is
explained as follows: verification for a non-negative instance is trivial and does not require
the hint parameter while verification for a negative instance takes advantage of the fact that
if number i has no natural square root then there exists h such that h · h < i < (h + 1) · (h + 1).

1 function verify(int i, int s, int h) -> boolean

2 if s == -1

3 result = h*h < i and (h+1)*(h+1) > i

4 else

5 result = s*s == i

6 end

7 end

Program 3.3: Natural square root verifier

We proceed to evaluate the convenience of using a verifier for the purpose of validating the
correctness of a candidate solver for a given computational problem.

Proposition 3.1 (Correctness against a verifier). Let P ⊆ IP × S P be a computational
problem, let solve be a candidate solver, let veri f y be an appropriate verifier for the extended
P′. In order to prove that solve is correct for P it suffices to show the following:

For each i ∈ IP: solve(i) terminates and there exists h s.t. veri f y(i, solve(i), h) = True

The proving process resulting from proposition 3.1, although trivially correct, has an
inherent incompatibility with the proof of correctness validation process presented in the
next subsection 3.2.4. Specifically, it requires a hint object h to be supplied along each
correct solution s or, otherwise, it requires a method to obtain such h. In, contrast to this
requirement, the solver algorithm only calculates the solution. Enforcing the solver to
calculate the hint is not desirable as this calculation will make the solver more complex
without producing any information requested by the petitioner. To bypass this inconvenience,
we introduce the negated verifier in the following paragraph.

3.2.3.2 Negated verifier-based problem definitions

Contrary to the “positive” verifier presented earlier, a negated one focuses on wrong answers:
it uses the hint argument to prove that a proposed solution is not correct. Note that the
definition of negated verifiers, which follows, handles negative instances by using the
extended problem format, and so no explicit reference to negative instances is present.
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Definition 3.12 (Negated Verifier). Let P ⊆ IP × S P be a computational problem with
extended format P′. A negated verifier for P is a program NV(i, s, h) with the following
properties:

• NV receives three parameters: an instance i ∈ IP, a candidate solution s ∈ S P, and a
hint h whose format is specific to NV

• NV halts on all inputs, returning either True or False

• All incorrect solutions can be verified: If (i, s) < P′, then NV(i, s, h) = True for
some h

• Correct proposed solutions can never be verified: If (i, s) ∈ P′, then NV(i, s, h) =

False for all h

To intuitively grasp the concept of the negated verifier, we can imagine that for a given
solver there is a person, the “accuser”, who is trying to prove that a the solver is not correct.
To achieve this, it suffices to find an instance for which the solver returns a wrong solution
and also provide a proof (hint) for their claim. A negated verifier is responsible to evaluate
the validity of this “accusation”.

More formally, the following statements connect membership and non-membership in a
problem P with the response of a negated verifier NV for P, where NP is the set of negative
instances and NoS olution in an appropriate set for negative responses:.

(i, s) ∈ P or (i, s) ∈ NP × NoS olution ⇐⇒ f or all h: NV(i, s, h) = False
(i, s) < P and (i, s) < NP × NoS olution ⇐⇒ there exists h: NV(i, s, h) = True

Let us again take the problem of natural square roots of natural numbers as an example.
A negated verifier when NoS olution = {−1} is presented as program 3.4. This program
verifies the two possible kinds of errors a solver algorithm can make:

• The proposed solution is a yes-solution (, −1) but does not really equal the square
root of the instance.

• The proposed solution is a no-solution (= −1) but the instance actually has a square
root. In this case, the hint h must hold the actual square of the instance as a proof.

1 function negatedVerify(int i, int s, int h) -> boolean

2 result = s == -1 and h*h == i or s != -1 and s*s != i

3 end

Program 3.4: Natural square root negated verifier
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Table 3.1 gives a sample of responses for this negated verifier along with a brief explanation,
where NP is the set of negative instances of P.

i s h Response Explanation

4 2 0 False (i, s) ∈ P
4 2 2 False (i, s) ∈ P
5 2 0 True s < NoS olution, (i, s) < P
5 -1 2 False s ∈ NoS olution, i ∈ NP

9 -1 2 False s ∈ NoS olution, i < NP and h not adequate
9 -1 3 True s ∈ NoS olution, i < NP and h adequate

Table 3.1: Sample responses of program 3.4

Having a negated verifier for a computational problem allows as to validate the correctness
of a candidate solver.

Proposition 3.2 (Correctness against a negated verifier). Let P ⊆ IP×S P be a computational
problem, let solve be a candidate solver, let negatedVeri f y be an appropriate negated verifier
for P. In order to prove that solve is correct for P it suffices to show the following:

For all i ∈ IP and h: solve(i) terminates and negatedVeri f y(i, solve(i), h) = False

Proof. Proposition 3.2 produces proofs by contradiction for the correctness of solvers in the
following manner. (We focus on problems where IP , ∅ without affecting out arguments.)
Let’s assume that solve is not correct. There must be an i ∈ IP s.t. either solve(i) does not
terminate or (i, solve(i)) < P′. Consequently, if solve(i) does terminate then (i, solve(i)) < P′

which in turn, from point 3 of the negated verifier definition (3.12), implies that there exists
an h s.t. negatedVeri f y(i, solve(i), h) = True. So, if we proof that “for all i ∈ IP and h:
negatedVeri f y(i, solve(i), h) = False and solve(i) terminates” we reach a contradiction. �

3.2.3.3 Data types and valid instances

Definition 3.9 for computational problems assumes that problem instances are drawn from
a specific space IP. The Ivee language we use for both problem definitions and solvers
has data types such as booleans, integers, arrays etc. so in practice, problem instances
are restricted to a specific data type. However, the intance space of a problem might not
correspond exactly to an Ivee data type, and so a wider data type will have to be used. In
the example of the natural square root (see programs 3.1, 3.4), we chose the int data type
to represent problem instances but the actual instance space consists only of non-negative
integers. As we are are only interested in the behaviour of solvers when handed valid
instances, we establish a guard mechanism to ensure that invalid instances are filtered out.
The guard takes the form of a function validIntance: Ti→ {True, False} where Ti is the
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1 function validInstance(int i) -> boolean
2 result = i >= 0
3 end
4
5 function negatedVerify(int i, int s, int h) -> boolean
6 result = s == -1 and h*h == i or s != -1 and s*s != i
7 end

Program 3.5: Natural square root problem definition with no complexity constraints

(possibly wider) data type used to represent instances. validIntance decides which elements
of Ti belong in IP by returning True for them and only them (i.e. it is the characteristic
function of IP over Ti). An appropriate validIntance function must be provided in problem
definitions along with the problem’s negated verifier. Program 3.5 demonstrates both these
functions and is able to fully define the Natural square root problem. (Note, that there is
not corresponding “validS olution” function, even if the data type representing solutions is
wider than S P, as the negated verifier is fully responsible to check the validity of proposed
solutions.)

3.2.3.4 Complexity constraints

The last issue that remains to be addressed is the specification of constraints for time and
space complexity requirements. We address it by introducing three additional functions to
the problem definition object, presented below.

• size: IP → N which receives an instance and returns it’s size as a single parameter

• maxS teps: N → N which receives the size of an instance, as returned by size, and
returns the maximum number of steps a solver is allowed to execute for instances of
that size

• maxS pace: N → N which receives the size of an instance, as returned by size, and
returns the maximum memory space a solver is allowed to utilize for instances of that
size

We once again return to the example of the natural square root problem and demonstrate a
full problem definition with complexity constraints in program 3.6. (Note that the size of
an instance in that example is regarded to be the absolute value of the intense and not the
number of it’s bits.)

We will be using these functions to validate the worst case asymptotic complexity of
candidate solvers (big-O) in a way outlined by propositions 3.3 and 3.4.

Proposition 3.3 (Time Complexity Bounds against maxSteps). Given functions size: IP →

N, maxS teps: N → N and a method stepcount that counts the number of steps of a
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1 function validInstance(int i) -> boolean
2 result = i >= 0
3 end
4
5 function size(int i) -> int
6 result = i
7 end
8
9 function maxSteps(int siz) -> int

10 result = siz
11 end
12
13 function maxSpace(int siz) -> int
14 result = 1
15 end
16
17 function negatedVerify(int i, int s, int h) -> boolean
18 result = s == -1 and h*h == i or s != -1 and s*s != i
19 end

Program 3.6: Natural square root problem definition

computation, in order to prove that the worst case time complexity of a solver solve belongs
to the class O(maxS teps(size(i))) where i ∈ IP, it suffices to show the following:

There exist n0, c s.t. for all i ∈ IP:
size(i) < n0 or stepcount(solve(i)) ≤ c · maxS teps(size(i))

Proposition 3.4 (Space Complexity Bounds against maxSpace). Given functions size: IP →

N, maxS pace:N→ N and a method spacecount that counts space utilized in a computation,
in order to prove that the worst case space complexity of a solver solve belongs to the class
O(maxS pace(size(i))) where i ∈ IP, it suffices to show the following:

There exist n0, c s.t. for all i ∈ IP:
size(i) < n0 or spacecount(solve(i)) ≤ c · maxS pace(size(i))

Both propositions come from the definition of asymptotic worst case complexity. Methods
stepcount and spacecount will be discussed in subsection 3.2.4.3.

3.2.3.5 Complete problem definition

We have placed both the representation of computational problems and the representation of
complexity constraints for an algorithmic problem in the form of a program. Of course, the
actual problem definition object will have the form of the Semantic AST of such program
rather than it’s source code for the reasons explained in subsection 3.2.2. Wrapping this
section up, we present the form the problem definitions (or in terms of the generic abstract
framework of section , the question objects/elements in Q) in definition 3.13.
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Definition 3.13 (Representation of Algorithmic Problem Definitions). Given an algorithmic
problem, that is a computational problem P ⊆ IP × S P accompanied by a pair of time and
space complexity constraints and an implied set NoS olution if P is not total over IP, the
representation of the problem’s definition (i.e. the question object) will be the Semantic
AST of a program with following functions:

• validIntance(Ti) -> boolean

• size(Ti) -> int

• maxSteps(int) -> int

• maxSpace(int) -> int

• negatedVerify(Ti, Si, Hi) -> boolean

Where Ti is a data type able to represent the elements of IP, Si is a data type able to
represent the elements of S P ∪ NoS olution and Hi is a data type able to represent the hint
argument that serves the function negatedVerify.

3.2.4 Proof validation through program verification

In this subsection we propose a method for validating a proof for a) the correctness b) the
compliance with time complexity constraints c) the compliance with space complexity con-
straints of a candidate solver in accordance with a problem definition object (see definition
3.13 for problem definition objects). The validation process is performed on a proof object,
distinct from the solver, and takes the form of formal program verification.

3.2.4.1 Formal program verification

Formal program verification is the process of ensuring that a program satisfies some require-
ments by using formal methods of mathematics. One of the most famous methods of formal
program verification is Hoare logic [Hoa69]. For a given program C, Hoare logic is capable
of proving that a set of properties, called postconditions, holds when C finishes execution.
A proof that asserts the desired postconditions might be conditioned by a set of properties,
called preconditions, that must hold before C executes. Figure 3.3 demonstrates these
principles. The main entity in Hoare logic is the Hoare triple which takes the form {P}C{Q}
where P is a precondition, C is a program (or a command, or a block of commands) and Q is
a postdonction. Triple {P}C{Q} means that if P holds at the start of the execution of C then
Q necessarily holds of the end of the execution. Preconditions and postconditions are logical
statements that express truths about the variables of C and their relations. Additionally, a
standard extension of Hoare logic presented in various sources, such as [NK14], is able
to proof that a given program terminates. Finally, as it is formally established by Nielson
[Nie84], extensions of Hoare logic are able to prove asymptotic upper bounds for the time

22 Chapter 3 Theoretical Setup



Figure 3.3: Simplified view of Hoare logic

complexity of programs. In the remainder of this section, we propose a proof validator for
algorithmic problem solving competitions that is able to validate Hoare logic proofs which
prove both the correctness and the upper bounds of the complexity of a solver algorithm in
accordance with a problem definition.

3.2.4.2 Correctness

By examining the concepts of the solver algorithm and the negated varifier, we observe
that the following “game” takes place among them: a solver proposes solutions while a
negated verifier checks them. By this observation and in conjunction with proposition 3.2,
we can prove the correctness of a solver by using formal program verification to prove a
special postcondition on a a program that appropriately combines the problem definition
program and the solver program. Specifically, this combination results in the program
correctness (program 3.7) and the desired postcondition is that variable verdict always
equals True when correctness finishes execution. Of course, it must also be proved that
correctness terminates for every input which will in turn prove that the solver terminates
for every valid instance (assuming a well defined negated verifier). By proving both the
postcondition verdict=True and the termination of correctness we prove the statement
of proposition 3.2 and thus the correctness of the solver under consideration.

1 function correctness(Ti i, Th h)

2 boolean verdict

3 if validInstance(i)

4 Ts s = solve(i)

5 verdict = not negatedVerify(i, s, h)

6 else

7 verdict = True

8 end

9 end

Program 3.7: Format of program correctness
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Figure 3.4: Computation flow of the correctness program for valid instances

Observe in program 3.7 that the condition if validInstance(i) guards against invalid
instances been passed to the solver or the negated verifier as we are only interested on the
behaviour of the solver for valid instances. Figure 3.4 demonstrated the computation flow in
the case of a valid intance i.

REMARK: We assume that the functions validInstance and solve do not mutate their
input. This assumption always holds when Ti is an immutable type such boolean or int
but may not hold if Ti is, for example, an array type which can be modified in place. To
handle a possible mutation of i, it suffices to create a deep copy before passing it to functions
validInstance and solve.

3.2.4.3 Complexity

We work in similar fashion for the proofs of time and space complexity bounds. Specifically,
for time complexity, we rely on the “method of program counters” as formally described by
Nielson [Nie84]. According to this method, in order to reason about upper bounds for the
time complexity of a program we first modifying that program by inserting a the command
time = time + 1 after every command of the original program. The variable time is
initialized with 0 and effectively counts the number of steps of the computations performed
by the program. We can then prove upper bounds for the time complexity of the program by
asserting an appropriate postcondition regarding the value of time with the use of standard
formal program verification. The method of programmed counters not only is proven to
be sound by Nielson [Nie84]3 but also, contrary to other methods, has the advantage of
allowing reasoning about the relation of the time special variable with the normal variables
of the original programs. This property is useful as we need to compare the number of steps
to the upper bounds returned by the maxSteps of a problem definition.

3It is worth noting that Nielson [Nie84] considers this method unnatural and proposes alternatives. However,
she proves that the alternatives are not more powerful than this method
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1 function timeComplexity(Ti i)
2 boolean verdict
3 if validInstance(i)
4 int s = size(i)
5 int max = maxTime(s)
6 int cost = solveTime(i)
7 verdict = s < N0 or cost <= C*m
8 else
9 verdict = True

10 end
11 end

Program 3.8: Format of program timeComplexity

1 function solveTime(int n) -> int
2 int _old_result
3 int time = 0
4 int r = 0
5 time = time + 1
6 _old_result = -1
7 time = time + 1
8 while r < n
9 time = time + 1

10 if r*r == n
11 time = time + 1
12 _old_result = r
13 time = time + 1
14 r = n
15 time = time + 1
16 else
17 time = time + 1
18 r = r+1
19 time = time + 1
20 end
21 end
22 result = time
23 end

Program 3.9: solveTime program corresponding to solver 3.1

In order to use the method of programmed counters, we appropriately combine the candidate
solver and the problem definition into the program timeComplexity. We first modify the
solve function of the candidate solver according to the method of programmed counters to
obtain the function solveTime (see program 3.9 for an example). The solveTime returns
the value of the special variable time instead of the actual solution. The format of the
program timeComplexity is presented in program 3.8.

Note that the identifiers N0 and C are mere placeholders: they must be replaced by positive
values before proceeding to a proof. The desired posticondition is again verdict=True.
A proof of the postcondition is acceptable for any N0 ≥ 0 and C > 0. The termination of
the program timeComplexity needs not be proved, it is implied by the termination of the
program correctness.
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Operation Code example Cost

new record object new Date(2020, 12, 23) 1
new array of length n new int[]{n} n
new map of length n new map(int -> int){n} n

Table 3.2: Memory allocation costs for the Ivee language

The process of proving upper bounds for the space complexity of solvers is almost identical
to the one for time complexity. The only difference is, instead of increasing a time variable
by 1 after every command, we increase a space variable after every command that allocates
memory by the amount of the newly allocated memory. Table 3.2 presents the memory
allocation costs for the operations of the Ivee language, after ignoring constant factors.
We obtain the program spaceComplexity in a completely analogous manner as with
timeComplexity. The function solveSpace comes from the original solve function
after modifying it to return the counted space usage instead of the actual solution. The
format of spaceComplexity is presented in program 3.10.

1 function spaceComplexity(Ti i)

2 boolean verdict

3 if validInstance(i)

4 int s = size(i)

5 int max = maxTime(s)

6 int cost = solveSpace(i)

7 verdict = s < N0 or cost <= C*m

8 else

9 verdict = True

10 end

11 end

Program 3.10: Format of program spaceComplexity

The postocondition is the same as in the case of time complexity.

REMARK: This process does not take into account memory de-allocation as Ivee does not
currently support it. So, the memory cost may only increase during the execution of a solver.
A way to avoid unnecessary memory costs would be to reuse existing previously allocated
objects when possible.

3.2.4.4 Proof objects

As Hoare logic is based on deductive reasoning, a proof of correctness would consist of
a series of logical steps, each resulting from the deduction schemes of Hoare or classical
logic, ending at the desired postcondition. Since the proof for correctness, time complexity
and space complexity are independent, a proof object must contain three different logical
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step sequences. Finally, a proof object must provide the values of N0 and C selected for the
proofs of complexity. Note that a proof object needs not contain the programs correctness,
timeComplexity or spaceComplexity as they can be computed by the problem definition
and the solver algorithm.

For more details on proof objects, consult appendix B, Hoare Logic Adaption.

3.2.4.5 Proof validator properties

We are now in position to introduce a proof validator for algorithmic problem solving
competitions in accordance with the abstract proof validator concept we saw in 3.1.1.2. The
proof validator will accept three parameters: a problem definition q, a solver algorithm a
and a proof object p in the form described in this section. The proof validator will then
validate the logical steps of the proof object to determine weather they lead to the desired
postconditions by means of logical deductions.

This proof validator is pure (see def. 3.5), as it only takes into account the parameters q, a
and p.

This proof validator is sound (see def. 3.3), as Hoare logic is a sound formal system as
demonstrated by Cook [Coo78]. Regarding proofs for complexity bounds, the method of
programmed counters, used intact for time complexity proofs and slightly adjusted for space
complexity proofs, is proven to be sound by Nielson [Nie84].

This proof validator is relatively complete (see def. 3.4) in a sense that Hoare logic is
relatively complete as suggested by Cook [Coo78]. In particular, completeness of any
axiomatic proof system (such as Hoare logic) is prohibited by Gödel’s Incompleteness
Theorem [Göd31]. In practice, the completeness of Hoare logic, and by extension the
completeness of our validator is limited by insurmountable restrictions in Logic itself. For a
detailed presentation of the subject, the reader may consult [Win93].

3.2.4.6 Hoare logic for the Ivee language

The original Hoare logic by Hoare [Hoa69] was proposed for a language with restricted
capabilities. Specifically, programs of that language could only have a single procedure
with only integer variables. In the years following the original publication, multiple authors
proposed extensions for handling more advanced program elements. We shall enumerate
a set that is adequate for supporting the capabilities of the Ivee language. Cook [Coo78]
handles global variables and sub-procedures, America and Boer [AB90] handle recursive
procedures, Bornat [Bor00] handles pointers and by extension records, while multiple
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authors such as Nipkow and Klein [NK14] handle arrays and lists with a logic that can also
be applied to mappings.
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4System Design and
Implementation

This chapter presents a system design according the theoretical setup of the previous chapter.
The system allows the conduction of competitions for algorithmic problems and comprises
of a web-based front-end and a purely blockchain-based back-end.

This chapter first presents an overview of the system followed, by a per-component analysis
and then proceeds to highlight some implementation aspects.

4.1 Design

4.1.1 Overview

The system is a realization of the the setup described in chapter 3. The main use cases of the
system are the following:

• Compiling a problem definition

• Starting a competition for a problem

• Compiling a solver algorithm

• Composing a proof of correctness/complexity for a solver algorithm against a problem
definition

• Submitting a solver algorithm for a problem

These use cases are served by the front end components and the smart contracts of the system.
Table 4.1 presents how the concepts introduced theoretically in chapter 3 are mapped into
smart contracts.

The system follows a component-based design approach. The system operates in two tiers:
the web tier responsible for the front end interface and the blockhain tier responsible for the
back end logic.
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Abstract Framework (3.1) Algorithmic Setup (3.2) Smart Contract

Competition flow Competition Manager
Question objects Algorithmic problem definitions Program Store
Answer objects Solver algorithms Program Store
Proof validator Proof validation via program verification Proof Validator

Table 4.1: Concept mapping

The system’s components in both these tiers are the following:

Competition
Manager

(blockchain) is the central component of the system

Compiler (web) compiles programs (problem definitions and solvers) from source
code to low level structured objects

Program Store (blockchain) validates and stores program objects

Proof
Composer

(web) assists the user to create proofs of correctness and encodes them
into proof objects

Proof Validator (blockchain) validates proofs of correctness

The main processes that take place place in the system is the starting of competitions and
the submission of solvers.

Competition starting is depicted in figure 4.1. The process is originated by a petitioner (user)
and utilizes the front end (Compiler), the Program Store and the Competition Manager. In
more detail, the competition starting process has the following steps:

1. The petitioner writes the Problem Definition in the Ivee language

2. The Compiler compiles the Problem Definition into a Program Object

3. The Program Object is submitted to the Program Store

4. The Program Store validates the Program Object, stores it and produces a Question
ID

5. The Question ID is reported to the petitioner

6. The petitioner starts the competition by submitting the Question ID and, optionally,
pledges a reward

7. The Competition Manager invokes the Program Store to verify that a Program Object
with the given Question ID has been submitted and validated

8. The Program Store verifies the presence, and thus the validity, of the Program Object

9. The Competition Manager creates a record with the details of the competition
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Answer submission is depicted in figure 4.2. The process is originated by a creator (user)
and utilizes the front end (Compiler and Proof Composer), the Program Store, the Proof
Validator and the Competition Manager. In more detail, the answer submission process has
the following steps:

1. The Creator writes the Solver Algorithm in the Ivee language

2. The Compiler compiles the Solver Algorithm into a Program Object

3. The Program Object is submitted to the Program Store

4. The Program Store validates the Program Object, stores it and produces an Answer
ID

5. The Answer ID is reported to the Creator

6. The Creator makes the Deductions for a proof of correctness with the help of the
Proof Composer

7. The Proof Composer encodes these deductions into a Proof Object and submits
them to the Proof Validator along with the Question Object (the Program Object
representing the Problem Definition) and the Answer Object (the Program Object
representing the Solver Algorithm)

8. The Proof Validator re-calculates the Question ID and the Answer ID and then invokes
the Program Store to verify that these programs have been submitted and validated

9. The Proof Validator validates the Proof Object

10. The Competition Manager closes the competition (not depicted)

4.1.2 Components

4.1.2.1 Competition Manager

The Competition Manager is the central component of the system, has the form of an
Ethereum smart contract and is responsible for the conducting of competitions according to
the flow described in 3.1.2.

The Competition Manager is agnostic of the format of question, answer and proof objects.
When a competition starts, the question and answer stores (currently unified by the Pro-
gram Store) and the proof validator for that competition must be specified. This happens
independently for each competition, thus different competitions are free to use different ques-
tion/answer stores and proof validators. This allows for future extensions and enhancements
of the platform to be developed independently, without the need to revise the Competition
Manager.
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The Competition Manager enforces an interface for smart contracts that play the role of
question/answer stores and proof validators.

Specifically, question/answer stores must implement the following function:

• retrieveMeta(objectID) -> MetaRecord which receives an object id and re-
turns metadata about the object with that id. If not such object was submitted and
validated, the function returns an empty response.

Proof validators must implement the following function:

• checkProof(questionID, answerID) -> MetaRecord which receives a ques-
tion id/answer id pair and returns metadata about a previously submitted, successfully
validated proof regarding those objects. If not such proof was submitted and validated,
the function returns an empty response.

The MetaRecord objects must at least contain information about the owner of the corre-
sponding object.

Finally, the Competition Manager itself has the following functions:

• payable startCompetition(questionID, questionStoreAddress,

answerStoreAddress, proofValidatorAddress) -> competitionID which
starts a competition with the specified question and configuration after first verifying
that the question is present in the question store by invoking it’s retrieveMeta
function. Any amount paid to that function will be the competition’s reward.

• checkProof(competitionID, answerID, proofID) which invokes the
checkProof function of the competition’s proof validator to check whether the
specified proof has been validated for the specified answer against the question of the
competition. If the proof validator responds positively, the competition closes and the
owner of the proof is paid the reward.

This thesis presents a single question/answer store and a single, experimental, proof validator.
However, this design promotes the extensibility and modularity of the system.

4.1.2.2 Compiler

The Compiler compiles programs written in the Ivee language which is used for both solver
algorithms and problem definitions. The compiler’s function is depicted in figure 4.3. In the
first stage, the source code is processed by the parser which produces a Semantic AST, such
as the one depicted in figure 3.2. This Semantic AST is passed to the Indexer which assigns
a unique code to every node. Indexing also results to the deduplication of expressions as
identical expressions are mapped to the same code even they occur multiple times. (Table
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Figure 4.3: Function of the Compiler

Code Expression Production

1 result Literal
2 1 Variable
3 result + 1 +(1, 2)
4 (result + 1) * (result + 1) *(3, 3)
5 n Variable
6 (result + 1) * (result + 1) <= n <=(4, 5)

Table 4.2: Expression indexing and deduplication for program 5.2

4.2 demonstrates expression indexing and deduplication for program 5.2.) Finally, this
Indexed Semantic AST is passed to the Encoder which produces a low level, structured
representation suitable to be submitted as transaction data to smart contracts.

4.1.2.3 Program Store

The Program Store is a responsible for validating and storing program objects. These
program objects are generated by the Compiler and represent both solver algorithms and
problem definitions. In essence, the Program Store validates that a given program object has
been supplied by a well behaving compiler as a means to prevent fraud.

4.1.2.4 Proof Composer

The Proof Composer is a front end, web-based, component responsible to assists the user
to create proofs of correctness and complexity and to encode them into proof objects. The
function of the Proof Composer is depicted in figure 4.4 for proofs of correctness (the
behaviour is similar for proofs of complexity). The Composer consists of the Combiner, the
Proof Assistant and the Encoder.

The Combiner takes the low level structured representations of the the problem definition
(Question Object) and the solver algorithm (Answer Object) and combines them in a single
program as described in paragraph 3.2.4.2.
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Figure 4.4: Function of the Proof Composer for correctness

Then, the assistant helps the user to make valid deductions in Hoare and classical logic,
aiming to prove the target postcondition. For more information on the format of those those
deductions, the reader may consult appendix B.

The Encoder, finally, produces a low level structured representation of the proof.

4.1.2.5 Proof Validator

The Proof Validator is a smart contract responsible for validating proof objects that are
generated by the Proof Composer. A proof object is passed to the Proof Validator along
with the related solver algorithm and problem definition. The Proof Validator must check
that all deductions are valid and lead to the target postconditions.

4.2 Implementation

4.2.1 Features

Our proof of concept implementation consists of:

• A fully functional Competition Manager

• A fully featured compiler for the Ivee language

• A Program Store which implements the greatest part of the essential checks

• A Proof Composer for correctness, complexity proofs are not implemented, which
– is limited to programs with only integer and boolean variables, do not procedures

and do no have global variables

– supports the full set of deductions presented in appendix B

4.2 Implementation 35



– disallows invalid deductions

• A Proof of Concept Proof Validator (PoCPV) for correctness which inherits the
limitations of the Proof Composer implementation. PoCPV is limited to deductions
of the following types:

– Modus Ponens: classical form

– Specification: specify a ∀ variable a to a given expression

– Irrelevant Assignment: assert Hoare triples of the form {P}x=E{P} where the
variable x does not occur in precondition P

These types correspond to half the deduction steps in our experimental proof. Deduc-
tions of other types are passed though without checks.

4.2.2 Optimizations

The optimization effort focused entirely on reducing memory and storage consumption in
smart contract code in order to reduce gas consumption. The most effective measure was to
not store program objects and proof objects in the storage space of Ethereum but, instead,
use their hash to check that a given object has been submitted and validated. (This hash is
also used as ID for those objects.) As program objects need to be easily accessible by the
Proof Composer, they are stored as events in the logs space of Ethereum, which is cheaper
than the storage space. Proof objects persist only in transaction data.

An effort was also made to reduce the size of the transaction data. Specifically, both the
Compiler and the Proof Composer encode objects by the use of bytes sequences and avoid
the use of higher level data types. For example, in program objects, 7 bytes are used to
encode an expression while 6 bytes are used to encode a command. Furthermore, the
deduplication of expressions performed by the Indexed helps reduce the total number of
expressions.

Finally, it must be noted that no effort has been made to optimize the time complexity of the
code, although all executed algorithms are of constant or linear time.
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5Evaluation

This chapter presents the results of “running” the system for a sample of programs and a
proof of correctness. The evaluation solely examines the blockchain tier (i.e. the Smart
Contracts). Measurements of gas costs are obtained for various versions of the evaluated
smart contracts.

The system is evaluated in regards to whether the gas costs stay within the block gas limit,
the ease of use and, finally, the feasibility for real world use cases.

5.1 Experimental Setup

5.1.1 Evaluation samples

5.1.1.1 Programs

We evaluate the Program Store component in terms of gas cost by submitting the following
programs:

• Small addition program 3.2

• Natural square root problem definition 3.6

• Simplified natural square root problem definition 5.1

• Natural square root “straight” verifier 3.3

• Natural square root problem solver 3.1

• Simplified natural square root solver 5.2

Where the simplified natural square root problem is described as follows: Given a natural
number i find a natural number s s.t:

s · s ≤ i < (s + 1)(s + 1)

The difference between the natural square root problem and the simplified version is that
the simplified version does not require a negative response for negative instances, it rather
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1 function validInstance(int i) -> boolean
2 result = i >= 0
3 end
4
5 function size(int i) -> int
6 result = i
7 end
8
9 function negatedVerify(int i, int s, int h) -> boolean

10 result = s*s <=i and (s+1)*(s+1) > i
11 end

Program 5.1: Simplified natural square root definition

1 function solve(int n) -> int
2 while (result+1)*(result+1) <= n
3 result = result + 1
4 end
5 end

Program 5.2: Simplified natural square root solver

accepts the floor of the real valued square root of the instance. The full problem definition is
given as program 5.1 and the corresponding solver is given as program 5.2.

5.1.1.2 Proof

We evaluate the PoCPV component by developing and submitting a proof for the correctness
of solver 5.2 against definition 5.1. The main ideas behind the proof are based in Galm et al.
[Gal+21] however, the full proof, in the format accepted by our platform, requires much
more detail. Specifically, it takes up 105 deduction steps and is fully listed in appendix C.
We do not proceed to proofs of time and space complexities as the PoCPV does not support
them. However, the logic behind proofs of correctness in our platform is quite similar to the
one for proof of complexity so we expect similar results.

5.1.2 Used tools

We use Ganache1 version 2.5.4 as a local Ehtereum environment configured on the Muir
Glacier hard fork. We use Remix2 to deploy smart contracts. Solidity compiler version is
0.8.7 while our code requires version 0.8.6. Finally, we set the compilation optimization
parameter to 200.

1https://www.trufflesuite.com/ganache
2https://remix.ethereum.org/
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5.1.3 Process

We first deploy our smart contracts on Ganache and then invoke them by our web front end
using web3.js. We perform multiple deployments in order to evaluate different versions
of the smart contracts. We use the gas cost measures reported by Ganache. In order to
determine the size of submitted objects we inspect those objects in the browser’s JavaScript
console.

5.1.4 Measurements

For each sample, we first determine it’s size according to various size measurements and
then submit it to the smart contract under evaluation to measure gas cost.

For program samples, we measure the following sizes:

• Number of expressions (exprs)

• Number of commands (comds)

• Number of functions (funs)

• Number of int literals (ints)

• Number of int strings (which come from identifier names) (strings)

We evaluate the Program Store in 4 different incremental versions:

1. Only receives the transaction data without doing any processing (Empty)

2. Only calculates the program ID without doing any validation (ID)

3. Performs all validations but does not issue an event with the Program Object (No
Event)

4. Full version (Full)

For the proof samples, we measure the following sizes:

• Number of of used axioms (axioms)

• Number of generated preconditions (preconds)

• Number of deduction steps (steps)

• Number of deduction steps being fully validated by PoCPV (valsteps)

• Number of logical sentences (sents)

• Number of expressions (exprs)

We evaluate the PoCPV in 3 different incremental versions:
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Size Cost
Prog exprs comds blocks funs ints strings Empty ID No Event Full

3.2 4 1 1 1 1 4 28,118 34,832 176,113 194,076
5.2 6 2 2 1 1 2 28,518 35,332 205,862 224,430
3.1 10 7 4 1 2 4 30,454 38,694 227,863 250,604
3.3 15 3 3 1 1 5 30,694 38,858 242,829 265,492
5.1 20 5 5 5 2 9 36,562 49,257 282,837 318,262
3.6 25 5 5 5 2 9 36,954 49,662 298,693 334,388

Table 5.1: Gas cost for submitting programs

Size Cost
axioms preconds steps valsteps sents expr Empty ID Full

27 7 105 53 185 79 85,066 133,341 2,002,838

Table 5.2: Gas cost for validating the proof of appendix C

1. Only receives the transaction data without doing any processing (Empty)

2. Only calculates the question, answer and proof IDs without doing any validation (ID)

3. Full version (Full)

5.2 System evaluation

5.2.1 Cost evaluation

The measured gas costs are compared to the block gas limit which, at the time of writing, is
15,000,000 [MyC21].

The results for the evaluation of the Program Store are displayed in table 5.1. In the No
Event and Full versions, a gas amount of 108,655 is fixed and associated with storing the
program’s metadata. These results indicate that the gas costs for a Program Store are in
relatively safe levels and that a quite complicated algorithm would be needed to reach the
block gas limit.

The results for the evaluation of the PoCPV are displayed in table 5.2. In the Full version
a gas amount of 122,044 is fixed and associated with storing the proof’s metadata. These
results indicate that the gas costs for a Proof Validator are not safe regarding the block gas
limit. We arrive to this conclusion because even a simple proof reaches quite high gas values,
without even fully validating all steps. It is certain that, unless considerable optimizations
are implemented on the Proof Validator, the validation of moderately complex proofs would
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need to break into multiple transactions. Thankfully this task is quite straightforward due
to the deductive nature of proofs. Indeed, since deduction steps can only rely on previous
steps, a single transaction may validate a number of steps and store a counter for the next
transaction to pick up. This proposition relies on the fact that the Empty version uses
insignificant gas and so re-submitting the whole proof object in each transaction is cheap.

5.2.2 Ease of use

A notable characteristic of the proof sample is it’s length. Although it proves a simple
program, the required deduction steps reached 105. This might be an insignificant size for a
computer, but for human operators it make the process difficult and tedious.

Worth discussing is the relatively large number of axioms needed to prove a small program.
26 simple arithmetic theorems where used as axioms. This implies that moderately complex
proofs would need a large number of ready-to-use theory in order to avoid re-proving trivial
facts.

5.2.3 Feasibility evaluation

As there is no system similar to our platform, the most important evaluation question regards
the feasibility of our concept for real world use cases. Having implemented the Program
Store almost to full extend, and having obtained some first results in regards to proof
validation, we have strong indications that the answer is positive.

5.2.4 Effect of other parameters

Some parameters that might have affected the results are:

• The optimization parameter of the Solidity compiler

• The gas efficiency of the evaluated smart contract code which can probably be further
optimized

• The length of the evaluated proof which is probably far from the minimal
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6Conclusions and Future Work

6.1 Conclusions

We have proposed a blockchain-based platform design for conducting algorithmic problem
solving competitions where proposed algorithms can be mechanically validated. The
feasibility of this design has been demonstrated by a proof-of-concept implementation. As
part of the design, we proposed a method for representing algorithmic problem definitions
as procedural computer programs and showed that these representations can be effectively
used to validate the correctness and complexity bounds of proposed algorithms.

The evaluation process revealed two main issues regarding the use of the platform, though
none of them is irrecoverable. The first issue arises from the length of the proofs of
correctness. The relatively large number of low level deduction steps makes it cumbersome
for human users to compose proofs. The second issue arises from the relatively large number
of axioms needed for a proof that only relies on simple arithmetic truths. This signals that
more complex proofs would require a very large number of axioms or otherwise, they would
have to prove many trivial facts thus making the proofs immensely lengthy.

6.2 Future Work

The main step of future work should be to extend the functionality of the Proof of Concept
Proof Validator in order to support more program elements such as (recursive) function
calls, global variables, records, dynamic memory allocation, arrays, maps, and real number
arithmetic as these elements are essential even for basic algorithms.

To make proofs more easily composable, the proof composer can be enhanced to generate
some of their low level details. This task may be assisted by an automated reasoning system
such as Isabelle/HOL [NWP02] or Coq [Bar+97]. Another approach worth considering is
the one suggested by Rodriguez [Rod16] which converts the process for composing a proof
of correctness into a visual game.

The issue of proving trivial facts, can be tackled by a mechanism able to extend the set of
axioms by logical reasoning. Facts proven by this mechanism would become straightly
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available and thus would not need re-proving. An interesting approach is followed by Carré
et al. [Car+21] which regards proofs as a tree and demands low level proofs only for those
nodes whose truth is being doubted by someone. This, approach however is interactive and
thus not fully automatic.

Finally, optimizations on the gas consumption of proof validation are worth investigation.
Even radical changes to the current setup can be explored, such as using formal verification
systems other that Hoare logic.
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ASpecification of the Ivee
Programming Language

A.1 High Level Description

A.1.1 Capabilities and limitations

Ivee is a high level procedural programming language with support for basic control struc-
tures (if-else, while), basic scalar data types (int, boolean, real), collection data types (arrays,
maps) and user-defined custom data types (pascal-style records). Ivee supports dynamic
memory allocation but, currently, does not support memory de-allocation.

Ivee does not support classes and lambda functions. This omission is intentional and aims
to enforce the algorithmic/procedural programming paradigm.

A.1.2 Program structure

An Ivee program consists of two parts: a) data type definitions and b) function definitions
and global variable declarations. Program A.1 demonstrates this structure.

1 # Data types

2 record Date

3 int year

4 int month

5 int day

6 end

7
8 # Functions and global variables

9
10 int TOTAL_DAYS_PASSED # a global variable

11
12 # a function

13 function sameYear(Date a, Date b) -> boolean

14 return a.year == b.year

15 end

16
17 real PI = 3.1415927 # another global variable

Program A.1: High level program structure
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A.1.2.1 Scopes and function declarations

Variables declared in a function are local to that function while variables declared on the top
level of a program are global. Functions are always global — no local function definitions
are allowed. Furthermore, not variable of function may be used prior to it’s declaration. Ivee
allows for the pre-declaration of functions, by using the declare statement, so that they
can be used prior to their implementation (this allows for mutually recursive functions).

1 declare function squareIt(int x) -> int

2
3 function addSquares(int a, int b) -> int

4 return squareIt(a) + squareIt(b)

5 end

6
7 function squareIt(int x) -> int

8 return x * x

9 end

Program A.2: Declare statement

A.1.3 Control structures

Ivee supports the standard if statement, with optional else-if and else branches, demonstrated
by program A.3 and the standard while statement demonstrated by program A.4.

1 if [boolean expression]

2 [block]

3 else if [boolean expression] # optional

4 [block]

5 # [...more optional else if branches...]

6 else # optional

7 [block]

8 end

Program A.3: If statement

1 while [boolean expression]

2 [block]

3 end

Program A.4: While statement

The result of a function is specified by either using the return statement or assigning a
value to the special result variable. The former breaks the flow of code execution and
exits the functions immediately while the later continues with the subsequent command. In
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program A.5, functions indexOfWithReturn and indexOfWithReturn are not equivalent
because the later returns the last index found.

1 function indexOfWithReturn(int val, int[] ar) -> int

2 int index = 0

3 while index < len(ar)

4 if ar[index] == val

5 return index

6 end

7 end

8 return -1

9 end

10
11 # NOT equivalent to indexOfWithReturn

12 function indexOfWithResult(int val, int[] ar) -> int

13 int index = 0

14 while index < len(ar)

15 if ar[index] == val

16 result = index

17 end

18 end

19 result = -1

20 end

Program A.5: Return vs result

A.1.4 Data types

A.1.4.1 Scalar types

Ivee supports the following scalar data types:

boolean True/False values

int Integer number values

real Real number values

We do not specify upper/lower bounds for the int type neither precision for the real
type. Both these number types may be assigned the semantics of computer arithmetic or
mathematical arithmetic depending on the requirements of the work the Ivee language is
being used in.

The int type is auto-convertible to the real type but not vice versa.
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A.1.4.2 Container types

Ivee supports the following container type kinds:

array<E> Fixed size collection of elements of type E indexed by the integer range
[0, size-1]

map<K, V> Fixed size collection of values of type V indexed by arbitrary keys of
type K

Random access of elements of both these types should be considered to have O(1) time cost.
Container type variables are declared with specific E, K and V types while container type
values are created with a specific size. Note there are no 2D arrays, arrays of arrays must be
used instead. Program A.6 demonstrates container types.

1 int[] myIntArray # declare int array

2 myIntArray = new int[]{15} # create int array of size 15

3
4 int[][] myInt2DArray # declare int[] array

5 myInt2DArray = new int[][]{10} # create int[] array of size 10

6
7 map[real -> boolean] myMap # declare real -> boolean map

8 myMap = new map[real -> boolean]{20} # create real -> boolean map of size

20

Program A.6: Container types

A.1.4.3 Record types

Ivee supports the declaration of used-defined custom record types. The declaration of a
record type consist of a type name and a sequence of fields. A field is a pair consisting of
the field name and the field type. The types the fields in a record type may refer to other
record types or even the same record types leading to recursive data structures. Program A.7
demonstrates the declaration of record types and the creation of record objects.

A.1.4.4 Special types

Ivee contains the following special types:

None Includes only the special value None which is assigned as default value
to container and record type variables

Void Implicitly set as the return type of functions which return nothing

A.1 High Level Description 55



1 # Simple record type
2 record Date
3 int year
4 int month
5 int day
6 end
7
8 # Record type referring to other record type
9 record Submission

10 int value
11 Date submissionDate
12 end
13
14 # Recursive record type
15 record Node
16 int value
17 Node next
18 end
19
20 function testRecords()
21 Submission answer = new Submission(42, new Date(1979, 10, 12))
22 end

Program A.7: Record types

It is not possible to declare a variable of a special type. However, the special value None
can be accessed via the homonymous literal None and is assignable to container and record
variables.

A.1.4.5 Default variable values

All variables take a default value upon declaration. Default values per variable type are
given in table A.1.

Variable Type Default Value

boolean False
int 0
real 0.0
array None
map None
record None

Table A.1: Default variable values in Ivee language

A.1.5 Builtin operators

Table A.2 summarizes the builtin operators of the Ivee language.

56 Chapter A Specification of the Ivee Programming Language



Operator Return type Operand types Application Description

+ int int, int infix Integer addition
- int int, int infix Integer subtraction
* int int, int infix Integer multiplication
/ int int, int infix Integer division
% int int, int infix Integer modulo
- int int prefix Integer negation
+ real real, real infix Real addition
- real real, real infix Real subtraction
* real real, real infix Real multiplication
/ real real, real infix Real division
- real real prefix Real negation
== boolean any same typed pair infix Equality
!= boolean any same typed pair infix Inequality
< boolean int, int infix Integer lesser
<= boolean int, int infix Integer lesser or equal
> boolean int, int infix Integer greater
>= boolean int, int infix Integer greater or equal
< boolean real, real infix Real lesser
<= boolean real, real infix Real lesser or equal
> boolean real, real infix Real greater
>= boolean real, real infix Real greater or equal
and boolean boolean, boolean infix Boolean and
or boolean boolean, boolean infix Boolean or
not boolean boolean prefix Boolean not
len int array prefix Array length

Table A.2: Builtin operators of the Ivee language

A.2 Language Elements

A.2.1 Lexical elements

Ivee has the following keywords: function declare alias record new len if else
while for in end return array map and or not True, False None int boolean real
void

Ivee has the following symbol operators: + - * / % == < > <= >=

Ivee has the following opening/closing parenthesis pairs: () [] {}

Ivee has the following special symbols: = . , ->
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An int literal is a recognized by the regular expression: [0-9]+
An real literal is a recognized by the regular expression: [0-9]+\.[0-9]+
Of course, the recognition of real literals has priority over int literals.

Identifiers of type, field and variable names can contain ascii letters, digits and underscores
and must not start with a number. Identifiers are recognized by the regular expression:
[A-Za-z_][A-Za-z0-9_]+

Commands in Ivee are terminated by newlines. However, the contents of (matching) paren-
theses can safely include newlines and span multiple lines as part of the same command.

We skip the formal definition of the Ivee syntax as it is trivial work and can be inferred from
the program examples.

A.2.2 Semantic elements

This subsection presents the elements of the semantics of an Ivee program. The fields
(children) of each element are summarized in tables. The notation A < B means that
elements A are a special case of elements B. If an elements is abstract, it cannot occur in
programs without been specialized.

We start this subsection from the most elementary notions and conclude with the notion of a
full program.

Type (abstract)

Abstract notion of type (see A.1.4).

Fields Kind Description

name string Unique identifier for the type

Array Type < Type

Array types (see A.1.4.2).

Fields Kind Description

elementType Type Type of array’s elements
name string Calculated as: “elementType.name[]”
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Map Type < Type

Map types (see A.1.4.2).

Fields Kind Description

keyType Type Type of map’s keys
valueType Type Type of map’s values
name string Calculated as: “map(keyType.name -> valueType.name)”

Record Type < Type

Record types (see A.1.4.3).

Fields Kind Description

fields list of Variables Variables with unique names scoped within a Record Type
name identifier Unique identifier

Literal

Literals represent a constant value encoded as a lexical element of a program. Literals can
be of type int which represents integer numbers, real which represents real numbers, or
boolean which represents the values True and False.

Fields Kind Description

type Type Type of the represented value
value string The represented value

Variable

Variables are named placeholders for values.

Fields Kind Description

type Type Type of values the variable can hold
name identifier Unique identifier within the scope of the variable

Expression (abstract)

Abstract notion for something that is evaluated at runtime to produce a value.
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Fields Kind Description

type Type Type of the resulting value

Literal Read < Expression

A Literal Read is an expression consisting of a single literal.

Fields Kind Description

literal Literal The literal to read
type Type Same as the type of the literal

Variable Access < Expression

A Variable Access is an expression consisting of a single variable. Can be used in write
mode as the left hand of an assignment.

Fields Kind Description

variable Variable The variable to access
type Type Same as the type of the variable

Operation < Expression, Command

An operation is an expression that invokes a function or an operator. Because function
invocations can have side effects, an Operation that invokes a function (not an operator) can
occur standalone as a command.

Fields Kind Description

operator Function Declaration Operator to apply
operands list of Expressions The variable to access
type Type Same as the return type of the operator

Array Creation < Expression

An Array Creation is an expression which evaluates to a newly allocated array. An Array
Creation must necessarily specify either the size of the array of the initial elements of the
array.
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Fields Kind Description

type Array Type Type of the array
size? int Expression Size of the array
initializer? list of type.elementType Expressions Elements of the array

Map Creation < Expression

An Map Creation is an expression which evaluates to a newly allocated map.

Fields Kind Description

type Map Type Type of the map
size int Expression Size of the map

Record Creation < Expression

An Record Creation is an expression which evaluates to a newly allocated record.

Fields Kind Description

type Record Type Type of the record
fieldValues list of Expressions Values of the record’s fields

Array Access < Expression

An Array Access is an expression which reads an element of an array by index. Can be used
in write mode as the left hand of an assignment.

Fields Kind Description

array array Expression Array to access
index int Expression Index of the array to access
type Type Same as the elementType of the array

Map Access < Expression

A Map Access is an expression which reads a value of a map by key. Can be used in write
mode as the left hand of an assignment.
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Fields Kind Description

map map Expression Map to access
key map’s keyType Expression Key of the map to access
type Type Same as the valueType of the map

Field Access < Expression

A Field Access is an expression which reads a field of a record. Can be used in write mode
as the left hand of an assignment.

Fields Kind Description

record record Expression Record to access
field Variable Field of the record to access
type Type Same as the type of the field

Command (abstract)

Abstract notion for a statement that is executed at runtime.

Block

A block is a list of commands.

Fields Kind Description

commands list of Commands Commands of the block

Variable Declaration < Command

A Variable Declaration is a Command that declares and optionally initializes a Variable.
Variable Declarations can occur in function bodies, declaring local Variables, or in the top
level of programs, declaring global Variables.

Fields Kind Description

variable Variable Declared Variable
initializer? Expression of type variable.type Initializer of the variable
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Assignment < Command

An Assignment is a command that assigns a new value to a Variable, Array element, Map
key or Record field.

Fields Kind Description

leftHand Expression Variable, Array, Map or Field Access
value Expression Value to assigned to leftHand

Return Statement < Command

A Return Statement ends the execution of a function and (if the function is not Void) returns
a result.

Fields Kind Description

value Expression Value to return

If Statement < Command

An If Statement executes on of two branches depending on the evaluation of a conditions. If
the else branch is missing, the execution continues with the next command.

Fields Kind Description

condition boolean Expression Condition to evaluate
body Block Block to execute condition is True
elseBody? Block Block to execute if condition is False

NOTE: Else-if branches are just syntactic sugar for if statements nested in the else branch.
Program A.8 demonstrates the semantics of else-if branches.

While Statement < Command

A While statement executes a block while a condition holds.

Fields Kind Description

condition boolean Expression Condition to evaluate
body Block Block to execute while condition is True
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1 # this statement
2 if value < 0
3 sign = -1
4 else if value > 0
5 sign = 1
6 else
7 sign = 0
8 end
9

10 # is translated to this
11 if value < 0
12 sign = -1
13 else
14 if value > 0
15 sign = 1
16 else
17 sign = 0
18 end
19 end

Program A.8: Else-if is syntactic sugar

Function Declaration

A Function Declaration represents the signature of a function of operator.

Fields Kind Description

name string Ιdentifier of the function
arguments list of Variables Arguments of the function
returnType Type Return type of the function
resultVariable Variable Special result variable of the function of type returnType
isOperator boolean Whether this declaration regards an operator

Function Definition

Α Function Definition consists of the declaration and the implementation of a function.

Fields Kind Description

declaration Function Declaration Declaration of the function
body Block Body of the function

Program

A Program consists of definitions of custom Record Types, declarations of global variables
and definitions of functions.
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Fields Kind Description

recordTypes list of Record Types Record types declared
functions list of Function Definitions Functions defined
gobalVariables list of Variable Declarations Global variables declared

A.2 Language Elements 65



BHoare Logic Configuration

We adapt the Hoare logic for formally proving truths about programs in a special configura-
tion that suits our purposes.

First, we scope logical theorems to code locations. A code location is essentially a line of
code and consists of a code block and a command index. For example the following:
x == False @1.2
means that the variable x is equal to False in command 2 of code block 1.

Of course, we still maintain the us-coped theorems, which apply everywhere. Any deduction
must take into account that the scope of the participating theorems are compatible i.e. they
have the same scope or one of them is un-scoped.

A proof in this proposed configuration will consist of a sequences of such (scoped) theorems,
each produced by the application of a certain deduction scheme.

A full proof in this configuration is listed in appendix C.

B.1 Proof Elements

Sentence

A Sentence is a logical formula that represents a truth about the Variables of a Program under
examination. Furthermore, a Sentence may introduce logical Variables i.e extra Variables
that do not exist in the Program. Logical Variables may be (universally or existentially)
quantified.

In the simplest form, a Sentence expresses membership of certain Expressions (involving
logical and Program Variables) in a relation. For example, the following Sentence states
that the pair (x, a + 1) belongs in relation > (greater) i.e. that the value of x is greater than
the value of a + 1:

x > a + 1
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Sentences can be composed into more complex Sentences by logical operators. For example,
the following Sentence uses the→ (implication) operator to state that if a equals b then b
equals a for all int a and int b.

∀int a ∀int b ((a == b)→ (b == a))

The expressive potential of Sentences is fully presented below as an EBNF grammar.
(Note that this EBNF grammar does not aim to define a language but rather to present the
semantics of Sentences. So it does not deal with issues such as separator tokens, prefix or
infix operator application etc.)

S entence = Quanti f iedVariables, LogicalExpression
Quanti f iedVariables = {Quanti f ier,Variable}
Quanti f ier = ∃ | ∀

LogicalExpression = RelationMembership | LogicalOperation
RelationMembership = RelationS ymbol,RelationMembers
RelationMembers = Expression, {Expression}
LogicalOperation = LogicalOperator, LogicalOperationArguments
LogicalOperationArguments = S entence, {S entence}

Supported RelationS ymbols are the following built-in operators which operate on int,
boolean and real values: ==, !=, <, <=, >, >=, and, or, not. These operators are
presented in table A.2.

Supported LogicalOperators, which operate on Sentences, are the following: ∧ (conjuction),
∨ (disjunction), ¬ (negation),→ (implication).

A Sentence with a single relation membership and with no quantified variables will be called
a Fact. A Fact with equality (==) as relation symbol will be called an Identity.

Code Location

A Code Location is essentially a Command in a Program. It is determined by the Block
where the Command is located and the index of the Command within that Block.

Code Locations are represented with the notation @BlockCode.CommandIndex. Further-
more, there are two special types of code locations: a) end-of-block, which corresponds to
the location right after the last command of block and b) global, which is used to denote that
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a Theorem is un-scoped and applies everywhere. Program B.1 notes the Code Locations of
each command and the end-of-block code locations (@3.3, @4.2, @2.2, @1.4).

1 function solve(int n) -> int

2 int r = 0 # @1.1

3 result = -1 # @1.2

4 while r < n # @1.3

5 if r*r == n # @2.1

6 result = r # @3.1

7 r = n # @3.2

8 else # @3.3

9 r = r+1 # @4.1

10 end # @4.2

11 end # @2.2

12 end # @1.4

Program B.1: Code locations

Theorem

A Theorem is a Sentence proven to hold at a specific Code Location (or globally). If a
theorem applied at a Code Location, we call it a precondition of the statement at that Code
Location.

Deduction

A Deduction is the action of applying a Deduction Scheme (see B.2) on a set of input
arguments to produce a new Theorem. Input arguments may be other Theorems, Code
Locations, Expressions etc.

Step

A Step is a Theorem accompanied by the Deduction that produced it.

Proof

A proof is a sequence of Steps where each Step is produced by a Deduction that can only
have Theorems of preceding Steps as input arguments. A Proof cannot be valid if it has an
“open invariant” as described later in the Total While deduction scheme.
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B.2 Deduction Schemes

This Hoare logic configuration recognizes deduction schemes belonging to the following
groups:

Hoare Standard Hoare logic deductions (as seen in [NK14])

Hoare
simplifications

Deduction that simplify trivial Hoare logic deductions

Classical Classical logic deductions

Boolean
handling

Deductions for handling truths about boolean expressions

Computation Deduction for computing the value of simple expressions involving
literal values

Each deduction scheme is presented below by a table describing it’s arguments and the
format of the produced Theorem.

The notation theorem[a/b] means “theorem after replacing b by a”.

Axiom (classical)

This is a pseudo-deduction used to state universally accepted truths.

Input Arguments

Argument Kind Description

axiom Sentence A (universally acceptable) Sentence

Produced Theorem

Sentence axiom
Scope Global

Assignment scheme (Hoare)

This is the standard Hoare logic assignment scheme re-configured for forward reasoning.
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Input Arguments

Argument Kind Description

assignment Code Location x = E statement
precondition Theorem Can only include x in sub-expressions equal to E

Produced Theorem

Sentence precondition[x/E]
Scope Next of @assignment

If Condition Assertion (Hoare)

This deduction scheme asserts the condition an if statement to the if-body.

Input Arguments

Argument Kind Description

ifStatement Code Location if C then A else B? statement

Produced Theorem

Sentence C == True
Scope Start of A

Else Negated Condition Assertion (Hoare)

This deduction scheme asserts the negation of the condition an if statement to the else-
body.

Input Arguments

Argument Kind Description

ifStatement Code Location if C then A else B statement

Produced Theorem

Sentence C == False
Scope Start of B

If scheme (Hoare)

This is the standard Hoare logic if scheme.
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Input Arguments

Argument Kind Description

ifStatement Code Location if C then A else B? statement
ifPostcondition Theorem Must apply @ end of A
elsePostcondition Theorem Must apply @ end of B or @ifStatement if no B

and have the same Sentence as the ifPostcondition

Produced Theorem

Sentence ifPostcondition
Scope Next of ifStatement

While Condition Assertion (Hoare)

This deduction scheme asserts the condition a while statement to the while-body.

Input Arguments

Argument Kind Description

whileStatement Code Location while C do A statement

Produced Theorem

Sentence C == True
Scope Start of A

Set Variant (Hoare)

Sets the variant expression for a while statement.

Input Arguments

Argument Kind Description

whileStatement Code Location while C do A statement
variable Variable Logical Variable to hold the variant’s start-of-loop value
expression int Expression Expression that calculates the variant

Produced Theorem

Sentence variable == expression
Scope Start of A
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Total While scheme (Hoare)

While scheme for total correctness. Proves that a while statement terminates.

Input Arguments

Argument Kind Description

whileStatement Code Location while C do A statement
variantDefinition Theorem variable == (int) expression@ start of A
variantNonNegative Theorem expression >= 0 @ end of A
variantDecreasing Theorem variable > expression@ end of A

Produced Theorem

Sentence C == True
Scope Next of whileStatement

Invariant Assertion (Hoare)

Asserts a precondition of a while statement to the while-body. The asserted theorem will be
an “open invariant” required to be proved by the Invariant Proof scheme.

Input Arguments

Argument Kind Description

whileStatement Code Location while C do A statement
invariant Theorem Must apply @whileStatement

Produced Theorem

Sentence invariant
Scope Start of A
Opens An invariant for whileStatement

Invariant Proof (Hoare)

Proves an invariant asserted to a while statement by the Invariant Assertion scheme. Requires
a terminationProof obtained by the Total While scheme.
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Input Arguments

Argument Kind Description

whileStatement Code Location while C do A statement
invariantStart Theorem Must apply @ Start of A
invariantEnd Theorem Must be equal to invariantStart and apply @ end of A
terminationProof Theorem A theorem proved by Total While scheme

for the whileStatement

Produced Theorem

Sentence C == True
Scope Next of whileStatement
Resolves The invariant that asserted invariantStart

Irrelevant Variable Assignment scheme (Hoare simplifications)

Forwards a precondition though an assignment when the left hand of the assignment does
not occur in the precondition.

Input Arguments

Argument Kind Description

assignment Code Location x = E statement
precondition Theorem Cannot include variable x

Produced Theorem

Sentence precondition
Scope Next of @assignment

Non Self Referring Assignment scheme (Hoare simplifications)

A simplified version of the Assignment scheme for when the left hand does not occur in the
right hand.

Input Arguments

Argument Kind Description

assignment Code Location x == E statement where x does not occur in E

Produced Theorem

Sentence x = E
Scope Next of @assignment
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Pass to If Block (Hoare simplifications)

Inserts a precondition of an if statement to the if-block.

Input Arguments

Argument Kind Description

ifStatement Code Location if C then A else B? statement
precondition Theorem Must apply @ifStatement

Produced Theorem

Sentence precondition
Scope Start of A

Pass to Else Block (Hoare simplifications)

Inserts a precondition of an if statement to the else-block.

Input Arguments

Argument Kind Description

ifStatement Code Location if C then A else B statement
precondition Theorem Must apply @ifStatement

Produced Theorem

Sentence precondition
Scope Start of B

Modus Ponens (classical)

Modus Ponens.

Input Arguments

Argument Kind Description

antecedent Theorem Any Theorem
implication Theorem Theorem of the form antecedent→ consequent

Produced Theorem

Sentence consequent
Scope Most specific scope between antecedent and implication
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Specification (classical)

Replaces a universally quantified variable by an Expression.

Input Arguments

Argument Kind Description

original Theorem Theorem with a universally quantified variable
variable Variable Universally quantified variable of original
replacement Expression Expression of same type as variable

Produced Theorem

Sentence original[replacement/variable]
Scope Same as original

Replacement (classical)

Replace an Expression by another Expression when these Expressions are proved equal by
an identity Theorem.

Input Arguments

Argument Kind Description

original Theorem Any Theorem
identity Theorem Theorem of the form a = b
replacementPart Left or Right Left: replace a by b, Right: replace b by a
replacementIndex integer Which occurrence in original to replace

Produced Theorem

Sentence original after replacing replacementIndex-th occurrence of a by b
(or b by a if replacementPart is Right)

Scope Most specific scope between original and identity

Conjunction (classical)

Creates the conjunction of two theorems.
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Input Arguments

Argument Kind Description

a Theorem Any Theorem
b Theorem Any Theorem

Produced Theorem

Sentence a∧b
Scope Most specific scope between a and b

Boolean to Logical (boolean handling)

Converts a fact regarding the truth value of a boolean expression to a corresponding relation
membership or logical operation. This is achieved by converting comparison operators to
relation symbols and boolean operators to logical operators.

Input Arguments

Argument Kind Description

booleanFact Fact Identity of the form E==True or E==False

Produced Theorem

Sentence E if E==True or ¬E if E==False
Scope Same as booleanFact

Fact to Boolean (boolean handling)

Converts a fact to the truthiness of a boolean expression by applying the reverse process of
the Boolean to Logical scheme.

Input Arguments

Argument Kind Description

fact Theorem Any Fact

Produced Theorem

Sentence fact == True
Scope Same as fact
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Negated Fact to Boolean (boolean handling)

Converts the negation of a fact to the falseness of a boolean expression by applying the
reverse process of the Boolean to Logical scheme.

Input Arguments

Argument Kind Description

negatedFact Theorem A negated Fact of the form ¬fact

Produced Theorem

Sentence fact == False
Scope Same as negatedFact

Computation

Computes a specified expression which contains only Literals (and not Variables) and asserts
it’s equality to the computed value.

Input Arguments

Argument Kind Description

expression Expression Can only contain literals and builtin operators

Produced Theorem

Sentence expression == compute(expression)
Scope Global
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CFull-length Listing of the
Experimentally Validated Proof

We list the sample proof used for evaluation (chapter 5) in it’s full length.

The combined correctness program is presented bellow.

1 function correctness(int i$12@definition , int result$11@solver , int

h$16@definition)

2
3 # ...variables declaration omitted...

4
5 result$11@definition = i$12@definition >= 0@definition # 1.0

6 if result$11@definition # 1.1

7 while ((result$11@solver + 1@solver) * (result$11@solver + 1@solver))

<= n$12@solver # 2.0

8 result$11@solver = result$11@solver + 1@solver # 6.0

9 end # 6.1

10 result$13@definition = ((s$15@definition * s$15@definition) >

i$14@definition) or (((s$15@definition + 1@definition) * (

s$15@definition + 1@definition)) <= i$14@definition) # 2.1

11 end # 2.2

12 end # 1.2

Program C.1: Correctness program for solver 5.2 against definition 5.1

The target postcondition is:
result$13@de f inition == False @1.2

Note that variables and literals are appended with their code and their context (i.e. whether
they come from the definition or the solver program) in order to avoid ambiguity.

The proof of correctness follows.

1. ∀boolean x ∀boolean y ((x == y))→((y == x))
Axiom

2. ∀int x ∀int y ((x == y))→((y == x))
Axiom
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3. ∀int x ∀int y ((x + y) == (y + x))
Axiom

4. ∀int x ((x - x) == 0)
Axiom

5. ∀int x ∀int y ((x + -(y)) == (x - y))
Axiom

6. ∀int x ∀int y ((x == y))→((x <= y))
Axiom

7. ∀int x ∀int y ((x == y))→((x >= y))
Axiom

8. ∀int x ∀int y ((x < y))→((x <= y))
Axiom

9. ∀int x ∀int y ((x > y))→((x >= y))
Axiom

10. ∀int x ∀int y ((x < y))→(¬((x >= y)))
Axiom

11. ∀int x ∀int y ((x <= y))→(¬((x > y)))
Axiom

12. ∀int x ∀int y ((x >= y))→((y <= x))
Axiom

13. ∀int x ∀int y ((x <= y))→((y >= x))
Axiom

14. ∀int x ∀int y ((x > y))→((y < x))
Axiom

15. ∀int x ∀int y ((x < y))→((y > x))
Axiom

16. ∀int x ∀int y ∀int a ((x == y))→(((x + a) == (y + a)))
Axiom
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17. ∀int x ∀int y ∀int a ((x > y))→(((x + a) > (y + a)))
Axiom

18. ∀int x ∀int y ∀int a ((x >= y))→(((x + a) >= (y + a)))
Axiom

19. ∀int x ∀int y ∀int a ((x == y))→(((x - a) == (y - a)))
Axiom

20. ∀int x ∀int y ∀int a ((x > y))→(((x - a) > (y - a)))
Axiom

21. ∀int x ∀int y ∀int a ((x >= y))→(((x - a) >= (y - a)))
Axiom

22. ∀int x ∀int y ((x > 0))→((y < (y + x)))
Axiom

23. ∀int x ∀int y ((x > 0))→((y > (y - x)))
Axiom

24. ∀int x ∀int y ∀int a (((x <= y))∧((y <= a)))→((x <= a))
Axiom

25. ∀int x ∀int y ((x < y))→((-(x) > -(y)))
Axiom

26. ∀int x ∀int y ((x >= 0))→(((x <= y))→(((x * x) <= (y * y))))
Axiom

27. ∀int x ∀int y ((x >= 0))→(((x < y))→(((x * x) < (y * y))))
Axiom

28. (result$11@definition == False) @1.0
Precondition

29. (result$13@definition == False) @1.1
Precondition

30. (n$12@solver == i$12@definition) @2.0
Precondition
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31. (result$11@solver == 0) @2.0
Precondition

32. (i$12@definition == i$14@definition) @2.1
Precondition

33. (s$15@definition == result$11@solver) @2.1
Precondition

34. (result$13@definition == False) @2.1
Precondition

35. ∀int y ((result$11@solver == y))→((result$11@solver >= y))
From 7 specifying x to result$ 11@solver

36. ((result$11@solver == 0))→((result$11@solver >= 0))
From 35 specifying y to 0

37. (result$11@solver >= 0) @2.0
Modus Ponens 31, 36

38. (result$11@solver >= 0) @6.0
Assert 37 as invariant

39. ((((result$11@solver + 1@solver) * (result$11@solver + 1@solver)) <= n$12@solver)
== True) @6.0
Assert condition to while block

40. (((result$11@solver + 1@solver) * (result$11@solver + 1@solver)) <= n$12@solver)
@6.0
From 39 by converting boolean expression equality to logical sentence

41. (t == (n$12@solver - (result$11@solver * result$11@solver))) @6.0
Set t=n$ 12@solver - (result$ 11@solver * result$ 11@solver) as variant

42. ∀int y ((result$11@solver >= 0))→(((result$11@solver < y))→(((result$11@solver *
result$11@solver) < (y * y))))
From 27 specifying x to result$ 11@solver

43. ((result$11@solver >= 0))→(((result$11@solver < (result$11@solver + 1@solver)))→(((result$11@solver
* result$11@solver) < ((result$11@solver + 1@solver) * (result$11@solver + 1@solver)))))
From 42 specifying y to (result$ 11@solver + 1@solver)
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44. ((result$11@solver < (result$11@solver + 1@solver)))→(((result$11@solver * re-
sult$11@solver) < ((result$11@solver + 1@solver) * (result$11@solver + 1@solver))))
@6.0
Modus Ponens 38, 43

45. ∀int y ((1@solver > 0))→((y < (y + 1@solver)))
From 22 specifying x to 1@solver

46. ((1@solver > 0))→((result$11@solver < (result$11@solver + 1@solver)))
From 45 specifying y to result$ 11@solver

47. ((1@solver > 0) == True)
Compute (1@solver > 0)

48. (1@solver > 0)
From 47 by converting boolean expression equality to logical sentence

49. (result$11@solver < (result$11@solver + 1@solver))
Modus Ponens 48, 46

50. ((result$11@solver * result$11@solver) < ((result$11@solver + 1@solver) * (re-
sult$11@solver + 1@solver))) @6.0
Modus Ponens 49, 44

51. ∀int y (((result$11@solver * result$11@solver) < y))→((-((result$11@solver * re-
sult$11@solver)) > -(y)))
From 25 specifying x to (result$ 11@solver * result$ 11@solver)

52. (((result$11@solver * result$11@solver) < ((result$11@solver + 1@solver) * (re-
sult$11@solver + 1@solver))))→((-((result$11@solver * result$11@solver)) > -(((result$11@solver
+ 1@solver) * (result$11@solver + 1@solver)))))
From 51 specifying y to ((result$ 11@solver + 1@solver) * (result$ 11@solver + 1@solver))

53. (-((result$11@solver * result$11@solver)) > -(((result$11@solver + 1@solver) *
(result$11@solver + 1@solver)))) @6.0
Modus Ponens 50, 52

54. ∀int y ∀int a ((-((result$11@solver * result$11@solver)) > y))→(((-((result$11@solver
* result$11@solver)) + a) > (y + a)))
From 17 specifying x to -((result$ 11@solver * result$ 11@solver))
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55. ∀int a ((-((result$11@solver * result$11@solver)) > -(((result$11@solver + 1@solver)
* (result$11@solver + 1@solver)))))→(((-((result$11@solver * result$11@solver)) + a) >

(-(((result$11@solver + 1@solver) * (result$11@solver + 1@solver))) + a)))
From 54 specifying y to -(((result$ 11@solver + 1@solver) * (result$ 11@solver + 1@solver)))

56. ((-((result$11@solver * result$11@solver)) > -(((result$11@solver + 1@solver) * (re-
sult$11@solver + 1@solver)))))→(((-((result$11@solver * result$11@solver)) + n$12@solver)
> (-(((result$11@solver + 1@solver) * (result$11@solver + 1@solver))) + n$12@solver)))
From 55 specifying a to n$ 12@solver

57. ((-((result$11@solver * result$11@solver)) + n$12@solver) > (-(((result$11@solver +

1@solver) * (result$11@solver + 1@solver))) + n$12@solver)) @6.0
Modus Ponens 53, 56

58. ∀int y ((n$12@solver + y) == (y + n$12@solver))
From 3 specifying x to n$ 12@solver

59. ((n$12@solver + -((result$11@solver * result$11@solver))) == (-((result$11@solver *
result$11@solver)) + n$12@solver))
From 58 specifying y to -((result$ 11@solver * result$ 11@solver))

60. ∀int y ((n$12@solver + -(y)) == (n$12@solver - y))
From 5 specifying x to n$ 12@solver

61. ((n$12@solver + -((result$11@solver * result$11@solver))) == (n$12@solver - (re-
sult$11@solver * result$11@solver)))
From 60 specifying y to (result$ 11@solver * result$ 11@solver)

62. ((-((result$11@solver * result$11@solver)) + n$12@solver) == (n$12@solver - (re-
sult$11@solver * result$11@solver)))
From 61 replacing by 59 at position 0

63. ((n$12@solver - (result$11@solver * result$11@solver)) > (-(((result$11@solver
+ 1@solver) * (result$11@solver + 1@solver))) + n$12@solver)) @6.0
From 57 replacing by 62 at position 0

64. ((n$12@solver + -(((result$11@solver + 1@solver) * (result$11@solver + 1@solver))))
== (-(((result$11@solver + 1@solver) * (result$11@solver + 1@solver))) + n$12@solver))
From 58 specifying y to -(((result$ 11@solver + 1@solver) * (result$ 11@solver + 1@solver)))

65. ((n$12@solver + -(((result$11@solver + 1@solver) * (result$11@solver + 1@solver))))
== (n$12@solver - ((result$11@solver + 1@solver) * (result$11@solver + 1@solver))))
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From 60 specifying y to ((result$ 11@solver + 1@solver) * (result$ 11@solver + 1@solver))

66. ((-(((result$11@solver + 1@solver) * (result$11@solver + 1@solver))) + n$12@solver)
== (n$12@solver - ((result$11@solver + 1@solver) * (result$11@solver + 1@solver))))
From 65 replacing by 64 at position 0

67. ((n$12@solver - (result$11@solver * result$11@solver)) > (n$12@solver - ((re-
sult$11@solver + 1@solver) * (result$11@solver + 1@solver)))) @6.0
From 63 replacing by 66 at position 0

68. (t > (n$12@solver - ((result$11@solver + 1@solver) * (result$11@solver + 1@solver))))
@6.0
From 67 replacing by 41 at position 0

69. (t > (n$12@solver - (result$11@solver * result$11@solver))) @6.1
Assignment Scheme for precondition 68 at command 6.0

70. ((result$11@solver * result$11@solver) <= n$12@solver) @6.1
Assignment Scheme for precondition 40 at command 6.0

71. ∀int y (((result$11@solver * result$11@solver) <= y))→((y >= (result$11@solver *
result$11@solver)))
From 13 specifying x to (result$ 11@solver * result$ 11@solver)

72. (((result$11@solver * result$11@solver) <= n$12@solver))→((n$12@solver >=

(result$11@solver * result$11@solver)))
From 71 specifying y to n$ 12@solver

73. (n$12@solver >= (result$11@solver * result$11@solver)) @6.1
Modus Ponens 70, 72

74. ∀int y ∀int a ((n$12@solver >= y))→(((n$12@solver - a) >= (y - a)))
From 21 specifying x to n$ 12@solver

75. ∀int a ((n$12@solver >= (result$11@solver * result$11@solver)))→(((n$12@solver -
a) >= ((result$11@solver * result$11@solver) - a)))
From 74 specifying y to (result$ 11@solver * result$ 11@solver)

76. ((n$12@solver >= (result$11@solver * result$11@solver)))→(((n$12@solver - (re-
sult$11@solver * result$11@solver)) >= ((result$11@solver * result$11@solver) - (re-
sult$11@solver * result$11@solver))))
From 75 specifying a to (result$ 11@solver * result$ 11@solver)
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77. ((n$12@solver - (result$11@solver * result$11@solver)) >= ((result$11@solver *
result$11@solver) - (result$11@solver * result$11@solver))) @6.1
Modus Ponens 73, 76

78. (((result$11@solver * result$11@solver) - (result$11@solver * result$11@solver)) ==

0)
From 4 specifying x to (result$ 11@solver * result$ 11@solver)

79. ((n$12@solver - (result$11@solver * result$11@solver)) >= 0) @6.1
From 77 replacing by 78 at position 0

80. ((((result$11@solver + 1@solver) * (result$11@solver + 1@solver)) <= n$12@solver)
== False) @2.1
While total by 79 and 69 for variant 41

81. ((((s$15@definition + 1@solver) * (result$11@solver + 1@solver)) <= n$12@solver)
== False) @2.1
From 80 replacing by 33 at position 0

82. ((((s$15@definition + 1@solver) * (s$15@definition + 1@solver)) <= n$12@solver)
== False) @2.1
From 81 replacing by 33 at position 0

83. (n$12@solver == i$12@definition) @6.0
Assert 30 as invariant

84. (n$12@solver == i$12@definition) @6.1
Irrelevant Variable Assignment Scheme for precondition 83 at command 6.0

85. (n$12@solver == i$12@definition) @2.1
Extract invariant 83/84 by 80

86. ((((s$15@definition + 1@solver) * (s$15@definition + 1@solver)) <= i$12@definition)
== False) @2.1
From 82 replacing by 85 at position 0

87. ∀int y ((result$11@solver >= y))→((y <= result$11@solver))
From 12 specifying x to result$ 11@solver

88. ((result$11@solver >= 0))→((0 <= result$11@solver))
From 87 specifying y to 0
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89. (0 <= result$11@solver) @6.0
Modus Ponens 38, 88

90. ∀int y ∀int a (((0 <= y))∧((y <= a)))→((0 <= a))
From 24 specifying x to 0

91. ∀int a (((0 <= result$11@solver))∧((result$11@solver <= a)))→((0 <= a))
From 90 specifying y to result$ 11@solver

92. (((0 <= result$11@solver))∧((result$11@solver <= (result$11@solver + 1@solver))))→((0
<= (result$11@solver + 1@solver)))
From 91 specifying a to (result$ 11@solver + 1@solver)

93. ∀int y ((result$11@solver < y))→((result$11@solver <= y))
From 8 specifying x to result$ 11@solver

94. ((result$11@solver < (result$11@solver + 1@solver)))→((result$11@solver <= (re-
sult$11@solver + 1@solver)))
From 93 specifying y to (result$ 11@solver + 1@solver)

95. (result$11@solver <= (result$11@solver + 1@solver))
Modus Ponens 49, 94

96. ((0 <= result$11@solver))∧((result$11@solver <= (result$11@solver + 1@solver)))
@6.0
Conjunct 89 and 95

97. (0 <= (result$11@solver + 1@solver)) @6.0
Modus Ponens 96, 92

98. (0 <= result$11@solver) @6.1
Assignment Scheme for precondition 97 at command 6.0

99. ∀int y ((0 <= y))→((y >= 0))
From 13 specifying x to 0

100. ((0 <= result$11@solver))→((result$11@solver >= 0))
From 99 specifying y to result$ 11@solver

101. (result$11@solver >= 0) @6.1
Modus Ponens 98, 100
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102. (result$11@solver >= 0) @2.1
Extract invariant 38/101 by 80

103. ((0 * 0) == 0)
Compute (0 * 0)

104. ((result$11@solver * 0) == 0) @2.0
From 103 replacing by 31 at position 0

105. ((result$11@solver * result$11@solver) == 0) @2.0
From 104 replacing by 31 at position 0

106. (result$11@definition == (i$12@definition >= 0@definition)) @1.1
Non Self Referring Assignment Scheme at command 1.0

107. (result$11@definition == (i$12@definition >= 0@definition)) @2.0
Pass 106 as precondition to if block

108. (result$11@definition == True) @2.0
Assert condition to if block

109. ((i$12@definition >= 0@definition) == True) @2.0
From 108 replacing by 107 at position 0

110. (i$12@definition >= 0@definition) @2.0
From 109 by converting boolean expression equality to logical sentence

111. (0@definition == 0)
Compute 0@definition

112. (i$12@definition >= 0) @2.0
From 110 replacing by 111 at position 0

113. (i$12@definition >= (result$11@solver * result$11@solver)) @2.0
From 112 replacing by 105 at position 0

114. (n$12@solver >= (result$11@solver * result$11@solver)) @2.0
From 113 replacing by 30 at position 0

115. (n$12@solver >= (result$11@solver * result$11@solver)) @6.0
Assert 114 as invariant
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116. (n$12@solver >= (result$11@solver * result$11@solver)) @2.1
Extract invariant 115/73 by 80

117. (i$12@definition >= (result$11@solver * result$11@solver)) @2.1
From 116 replacing by 85 at position 0

118. (i$12@definition >= (s$15@definition * result$11@solver)) @2.1
From 117 replacing by 33 at position 0

119. (i$12@definition >= (s$15@definition * s$15@definition)) @2.1
From 118 replacing by 33 at position 0

120. (i$14@definition >= (s$15@definition * s$15@definition)) @2.1
From 119 replacing by 32 at position 0

121. ∀int y ((i$14@definition >= y))→((y <= i$14@definition))
From 12 specifying x to i$ 14@definition

122. ((i$14@definition >= (s$15@definition * s$15@definition)))→(((s$15@definition *
s$15@definition) <= i$14@definition))
From 121 specifying y to (s$ 15@definition * s$ 15@definition)

123. ((s$15@definition * s$15@definition) <= i$14@definition) @2.1
Modus Ponens 120, 122

124. ∀int y (((s$15@definition * s$15@definition) <= y))→(¬(((s$15@definition * s$15@definition)
> y)))
From 11 specifying x to (s$ 15@definition * s$ 15@definition)

125. (((s$15@definition * s$15@definition) <= i$14@definition))→(¬(((s$15@definition *
s$15@definition) > i$14@definition)))
From 124 specifying y to i$ 14@definition

126. ¬(((s$15@definition * s$15@definition) > i$14@definition)) @2.1
Modus Ponens 123, 125

127. (((s$15@definition * s$15@definition) > i$14@definition) == False)
Negated Fact 126 to boolean

128. ((((s$15@definition + 1@solver) * (s$15@definition + 1@solver)) <= i$14@definition)
== False) @2.1
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From 86 replacing by 32 at position 0

129. (result$13@definition == (((s$15@definition * s$15@definition) > i$14@definition) or
(((s$15@definition + 1@definition) * (s$15@definition + 1@definition)) <= i$14@definition)))
@2.2
Non Self Referring Assignment Scheme at command 2.1

130. (((s$15@definition * s$15@definition) > i$14@definition) == False) @2.2
Irrelevant Variable Assignment Scheme for precondition 127 at command 2.1

131. ((((s$15@definition + 1@solver) * (s$15@definition + 1@solver)) <= i$14@definition)
== False) @2.2
Irrelevant Variable Assignment Scheme for precondition 128 at command 2.1

132. (result$13@definition == (False or (((s$15@definition + 1@definition) * (s$15@definition
+ 1@definition)) <= i$14@definition))) @2.2
From 129 replacing by 130 at position 0

133. ((1@definition == 1@solver) == True)
Compute (1@definition == 1@solver)

134. (1@definition == 1@solver)
From 133 by converting boolean expression equality to logical sentence

135. ((((s$15@definition + 1@definition) * (s$15@definition + 1@solver)) <= i$14@definition)
== False) @2.2
From 131 replacing by 134 at position 0

136. ((((s$15@definition + 1@definition) * (s$15@definition + 1@definition)) <= i$14@definition)
== False) @2.2
From 135 replacing by 134 at position 0

137. (result$13@definition == (False or False)) @2.2
From 132 replacing by 136 at position 0

138. ((False or False) == False)
Compute (False or False)

139. (result$13@definition == False) @2.2
From 137 replacing by 138 at position 0

140. (result$13@definition == False) @1.2
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